病例报告

改良型囊袋张力环与睫状体接触导致反复高眼压一例

Recurrent intraocular hypertension due to exposure of modified capsular tension ring with ciliary body: a case report

:148-153
 
临床上囊袋张力环(capsular tension ring,CTR)与睫状体接触导致的反复持续性高眼压较为少见,本文报告一例改良型CTR植入术后反复持续性高眼压的病例,行“巩膜悬吊线松解术”后高眼压状态有效缓解,考虑可能与巩膜固定缝线过紧,造成改良型CTR局部与睫状体相接触,刺激睫状体分泌过量房水有关。
Recurrent intraocular hypertension caused by contact between capsular tension ring (CTR) and ciliary body is rare clinically. We report a case of recurrent intraocular hy pertension after modified CTR implantation. The IOP returned to normal levels when released the scleral suture. We speculated that the ciliary process irritated by MCTR might increase aqueous humor secretion because of a tight scleral suture.

综述

眼表菌群与眼表疾病关系的研究进展

Research progress in the correlation of ocular surface microflora and ocular surface disease

:408-415
 
眼表菌群是定植于眼表的各种微生物群落,以细菌为主。在正常情况下,眼表菌群与人体眼表组织的细胞和平共生,维持眼表的稳态,共同保证眼表的健康。但在环境改变或免疫力低下的情况下,眼表菌群会发生变化,与眼部疾病的产生与发展关系密切,对人类的健康造成巨大的危害。随着组学研究的不断发展,我们对眼表菌群有了新的认识,为眼表疾病的发病机制、治疗开辟了新的思路,同时也提出了新的挑战。本文对国内外眼表菌群与疾病关系进行综述,为眼表疾病的发生、发展以及治疗提供参考。
The microbiome of the ocular surface consists of various microbial communities that colonize on the eye surface, mainly bacteria. The stabilization of the microbiome and the other ocular surface components plays an important role in maintaining the homeostasis of the ocular surface. However, unpredictable changes of ocular surface microbiome are strongly associated with ocular surface diseases in the situation of environmental changes or destruction of immune system. With the innovation of inspection technology, the current gene sequencing technology is applied to detect the ocular surface microbiome and confirm that the eye microbiome is closely related to ocular surface diseases. This paper investigates the corelation of ocular surface microbiomes and diseases. Moreover, we provide areference for the occurrence and development of ocular surface diseases and their treatment.
综述

眼球运动检查在阿尔茨海默病诊断的研究进展

Research progress on eye movement examination in the diagnosis of Alzheimer’s disease

:66-73
 
阿尔茨海默病(Alzheimer’s disease,AD)是发生于老年期或老年前期的中枢神经系统退行性病变,以进行性认知功能障碍为特征。随着社会老龄化加剧,AD已成为全球公共卫生问题,亟需研发更敏感、便捷和经济的筛查技术进行早期防控。眼球运动与认知功能密切相关,且眼球运动检查有非侵入性、成本低、检查时间短等优点。研究眼球运动异常和认知功能障碍之间的相关性,有助于研发更简便易操作的认知功能障碍筛查工具。随着人工智能技术的发展,机器学习算法强大的特征提取和计算能力对处理眼球运动检查结果有显著优势。本文对既往AD患者与眼球运动异常之间的相关性研究进行综述,并对机器学习算法模型辅助下,基于眼球运动异常模式进行认知功能障碍早期筛查技术开发的研究前景予以展望。
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system that occurs in old age or early old age. It is characterized by progressive cognitive dysfunction. With the world population aging, AD has become a global public health problem. The development of a more sensitive, convenient, and economic screening technology for AD is urgently needed. The eye movement function is closely related to cognitive function. Moreover, eye movement examination has advantages including non-invasiveness, low cost, and short examination time. Researches on the correlation between abnormal eye movement and cognitive dysfunction can help to develop a simple and easy-to-use screening tool for cognitive dysfunction. With the development of artificial intelligence technology, the dominant feature extraction and computing capabilities of machine learning algorithms have a significant advantage in processing eye movement inspection results. This article reviews the correlation between AD and eye movement abnormalities aiming to provide the research prospects of early screening technology development for cognitive dysfunction based on abnormal eye movement with the application of machine learning models.
综述

婴幼儿眼病的人工智能应用

Artificial intelligence application for infantile eye diseases

:214-221
 
近年来随着医疗领域数字化、信息化建设的加速推进,人工智能的应用越来越广泛,在眼科医学方面尤为突出。婴幼儿处于视觉系统发育的关键时期,此时发生的眼病往往会造成不可逆的视功能损伤,带来沉重的家庭和社会负担。然而,由于婴幼儿群体的特殊性以及小儿眼科医生的短缺,开展大规模小儿眼病筛查工作十分困难。最新研究表明:人工智能在先天性白内障、先天性青光眼、斜视、早产儿视网膜病变以及视功能评估等领域已经得到相关应用,在多种婴幼儿眼病的早期筛查、诊断分期、治疗建议等方面都有令人瞩目的表现,有效解决了许多临床难点与痛点。但目前婴幼儿眼科人工智能仍然不如成年人眼科发展充分,亟须进一步的探索和研发。
In recent years, with the acceleration of digitalization and informatization in medical field, artificial intelligence (AI) is more and more widely applied, especially in ophthalmology. Infants are in the critical period of visual development, during which eye diseases can lead to irreversible visual impairment and bring heavy burden to family and society. Due to the particularity of infants and the shortage of pediatric ophthalmologists, it is challenging to carry out large-scale screening for eye diseases of infants. According to the latest studies, AI has been studied and applied in the fields of congenital cataract, congenital glaucoma, strabismus, amblyopia, retinopathy of prematurity, and evaluation of visual function, and it has achieved remarkable performance in the early screening, diagnosis stage and treatment suggestions, solving many clinical difficulties and pain points effectively. However, AI for infantile ophthalmology is not as developed as for adult ophthalmology, so it needs further exploration and development.
论著

EZ Prep 清洗液替代二甲苯在眼组织特殊染色中的应用

Application of EZ Prep cleaning solution as a xylene substitute in special staining of ocular tissues

:571-577
 
目的: 探讨EZ Prep清洗液替代二甲苯进行手工脱蜡制作特殊染色片的效果。 方法: 应用EZ Prep清洗液替代二甲苯脱蜡,选取中山大学中山眼科中心临床病理科石蜡标本100例进行回顾性研究,常规切片后切片一式两份,分别采用传统二甲苯和EZ Prep清洗液手工脱蜡后按实验室标准化操作流程进行特殊染色,并比较脱蜡时间和染色效果。 结果: EZ Prep清洗液手工脱蜡处理的切片在革兰染色(Gram's)、六胺银染色(GMS)、过碘酸—雪夫染色(PAS)、马松(Masson)三色染色、刚果红等多种特殊染色中的染色质量和二甲苯脱蜡处理的效果一致,两组间染色片优良率比较差异无统计学意义(Z=0. 32,P>0. 05),且平均脱蜡时间由(33.0±2.7) min缩短至(7.2±1.1) min,加快了染色出片时间。结论:EZ Prep清洗液可以替代二甲苯在眼组织特殊染色中脱蜡,并具有脱蜡时间短、环保的优点,值得推广应用。
Objective: To investigate the effect of EZ Prep cleaning solution as an alternative to xylene for manual deparaffinization in the preparation of special staining slides. Methods: EZ Prep cleaning solution was utilized to replace xylene for deparaffinization in a retrospective study involving 100 paraffin-embedded specimens from the Clinical Pathology Department of Zhongshan Ophthalmic Center, Sun Yat-sen University. Routine sections were prepared and duplicated, with one set deparaffinized using traditional xylene and the other using EZ Prep cleaning solution. Subsequent special staining was performed following standardized laboratory protocols. Deparaffinization time and staining outcomes were compared. Results: Slides treated with EZ Prep cleaning solution for manual deparaffinization demonstrated staining quality comparable to xylene treatment across various special stains, including Gram's, GMS, PAS, Masson's trichrome, and Congo red. The difference in the excellent rate between the two methods is not statistically significant (χ 2 = 0.33, P > 0.05). Moreover, the average deparaffinization time is significantly reduced from 33.0±2.7 minutes to 7.2±1.1 minutes, thereby speeding up the staining process. Conclusion: EZ Prep could replace xylene deparaffinized sections in special staining of ocular tissues with the advantages of shorter deparaffinized time and environmental protection, which is worthy of promotion and application.
眼部多学科手术

角膜神经移植术治疗神经营养性角膜病变的研究进展

Research progress in the treatment of neurotrophic keratopathy with corneal neurotization

:520-526
 
神经营养性角膜病变是一种与角膜神经退行性改变有关的疾病,表现为角膜神经的知觉和营养功能受损,导致角膜上皮缺损、角膜溃疡和角膜穿孔。目前对神经营养性角膜病变的主要治疗方式有药物治疗、非手术干预治疗和手术治疗,但是对于重度病变患者行药物治疗、非手术干预治疗通常效果不佳。对未恢复角膜神经营养功能的患者行角膜移植术,可能导致角膜移植术后上皮持续不愈合,因此恢复角膜神经营养功能是该类患者复明的重要前提。角膜神经移植术是重度神经营养性角膜病变患者恢复角膜神经营养功能,提高角膜知觉,改善角膜透明度的重要和有效的治疗方法。角膜神经移植术通过将具有正常功能的供体神经移植到麻痹眼角膜缘周围,使神经末梢重新长入角膜基质,恢复角膜知觉功能。随着角膜神经移植术的术式的不断改进,其良好的术后效果和优点已经渐渐凸显。文章基于作者结合团队在角膜神经移植术方面经验结合近年研究进展阐述了神经营养性角膜病变的治疗手段和不同术式在角膜神经移植术中的应用,并进行展望。
Neurotrophic keratopathy is a disease related to degenerative changes in corneal nerves, resulting in impaired sensory and nutritive functions of corneal nerves. This leads to corneal epithelial defects, corneal ulcers, and corneal perforation. Currently, the main treatment modalities include pharmacotherapy, non-surgical interventions, and surgical treatment. However, drug therapy and non-surgical interventions often yield unsatisfactory results for severe neurotrophic keratopathy patients. Performing corneal transplantation in patients with unrecovered corneal sensation may result in persistent epithelial defect. Therefore, the restoration of corneal sensation is a crucial prerequisite for visual rehabilitation. Corneal neurotization emerges as an important and effective therapeutic approach for severe cases of neurotrophic keratopathy, aiming to restore corneal sensation and enhance corneal transparency. The procedure involves transplanting nerves from a donor with normal sensory function to the paralyzed sub-Tenon perilimbal space, allowing nerve endings to regenerate into the corneal stroma and restoring corneal sensory function. With continuous improvements in the technique of corneal neurotization, its favorable postoperative outcomes and advantages are becoming increasingly evident. This article, based on the team's experience in corneal neurotization, elaborates on the treatment modalities for neurotrophic keratopathy and the application and prospects of various surgical techniques in corneal neurotization.
Review Article

Application and performance of artificial intelligence in screening retinopathy of prematurity from 2018 to 2024: a meta-analysis and systematic review

Application and performance of artificial intelligence in screening retinopathy of prematurity from 2018 to 2024: a meta-analysis and systematic review

:206-223
 
Purpose: Artificial intelligence (AI) significantly enhances the screening and diagnostic processes for retinopathy of prematurity (ROP). In this article,we focused on the application and performance of AI in detecting ROP and distinguishing plus disease (PLUS) in ROP. Methods: We searched PubMed, Embase, Medline, Web of Science, and Ovid for studies published from January 2018 to July 2024. Studies evaluating the diagnostic performance of AI with expert ophthalmologists’judgment as a reference standard were included. The risk of bias was assessed using the QUADAS-2 tool and QUADAS-AI tool.Statistical analysis included data pooling, forest plot construction, heterogeneity testing, and meta-regression. Results: Fourteen of the 186 studies were included.The pooled sensitivity, specificity and the area under the curve (AUC) of the AI diagnosing ROP were 0.95 (95% CI 0.93-0.96), 0.97 (95% CI 0.94-0.98) and 0.97 (95% CI 0.95-0.98), respectively.The pooled sensitivity, specificity and the AUC of the AI distinguishing PLUS were 0.92 (95% CI 0.80-0.97),0.95 (95% CI 0.91-0.97) and 0.98 (95% CI 0.96-0.99), respectively.Cochran’s Q test (< 0.01) andHiggins I heterogeneity index revealed considerable heterogeneity. The country of study, number of centers, data source and the number of doctors were responsible for the heterogeneity. For ROP diagnosing, researches conducted in China using private data in single center with less than 3 doctors showed higher sensitivity and specificity. For PLUS distinguishing, researches in multiple centers with less than 3 doctors showed higher sensitivity. Conclusions: This study revealed the powerful role of AI in diagnosing ROP and distinguishing PLUS. However, significant heterogeneity was noted among all included studies, indicating challenges in the application of AI for ROP diagnosis in real-world settings. More studies are needed to address these disparities, aiming to fully harness AI’s potential in augmenting medical care for ROP.
Purpose: Artificial intelligence (AI) significantly enhances the screening and diagnostic processes for retinopathy of prematurity (ROP). In this article,we focused on the application and performance of AI in detecting ROP and distinguishing plus disease (PLUS) in ROP. Methods: We searched PubMed, Embase, Medline, Web of Science, and Ovid for studies published from January 2018 to July 2024. Studies evaluating the diagnostic performance of AI with expert ophthalmologists’judgment as a reference standard were included. The risk of bias was assessed using the QUADAS-2 tool and QUADAS-AI tool.Statistical analysis included data pooling, forest plot construction, heterogeneity testing, and meta-regression. Results: Fourteen of the 186 studieswere included.The pooled sensitivity, specificity and the area under the curve (AUC) of the AI diagnosing ROP were 0.95 (95% CI 0.93-0.96), 0.97 (95% CI 0.94-0.98) and 0.97 (95% CI 0.95-0.98), respectively.The pooled sensitivity, specificity and the AUC of the AI distinguishing PLUS were 0.92 (95% CI 0.80-0.97),0.95 (95% CI 0.91-0.97) and 0.98 (95% CI 0.96-0.99), respectively.Cochran’s Q test (< 0.01) andHiggins I heterogeneity index revealed considerable heterogeneity. The country of study, number of centers, data source and the number of doctors were responsible for the heterogeneity. For ROP diagnosing, researches conducted in China using private data in single center with less than 3 doctors showed higher sensitivity and specificity. For PLUS distinguishing, researches in multiple centers with less than 3 doctors showed higher sensitivity. Conclusions: This study revealed the powerful role of AI in diagnosing ROP and distinguishing PLUS. However, significant heterogeneity was noted among all included studies, indicating challenges in the application of AI for ROP diagnosis in real-world settings. More studies are needed to address these disparities, aiming to fully harness AI’s potential in augmenting medical care for ROP.
综述

脑卒中后视野缺损患者干预方案范围综述

Intervention plan for visual field defects in patients with stroke: a scoping review

:462-470
 
目的:系统分析脑卒中后视野缺损患者干预方案的相关研究,识别、归纳及总结干预的具体内容、结局指标和干预效果,为临床实践及未来该领域研究提供参考。方法:采用范围综述研究框架,系统检索中国知网、维普数据库、万方数据库、中国生物医学文献数据库、PubMed、Web of Science、Embase、CINAHL、Cochrane Library共9个数据库。检索时限为建库至2024年4月10日。对纳入文献进行筛选、汇总和分析。结果:最终纳入12篇文献,总结脑卒中后视野缺损患者干预方法及结局指标,干预方法包括替代性干预、补偿性干预、恢复性干预等,结局指标包括日常生活活动能力、日常生活扩展活动能力、阅读表现、视野检查等。结论:目前针对脑卒中后视野缺损患者的干预方案内容多样化、证据质量较低、结局指标不统一,有待进一步开展高质量研究探索最佳训练计划和规范结局指标。未来应不断改进、优化康复策略,建立最佳的多学科结构,制定科学、系统、个性化方案。
Objective: To systematically analyze the related studies on intervention schemes for patients with visual field defects after stroke, and to identify, summarize, and summarize the specific content, outcome indicators, and intervention effects, thereby providing a reference for clinical practice and future research in this field. Methods: Utilizing the scoping review method, a systematic search was conducted in 9 databases: CNKI, CQVIP, Wanfang Database, China Biomedical Literature Database, PubMed, Web of Science, Embase, CINAHL and the Cochrane Library. The search encompassed the period from the inception of each database to April 10, 2024. The selected literature was subsequrently screened, summarized, and analyzed. Results: A total of 12 articles were finally included, summarizing the intervention methods and outcome indicators for patients with visual field defects after stroke. The intervention methods comprised alternative intervention, compensatory intervention, and rehabilitative interventions. Outcome indicators include daily living activities, daily living extended activities, reading performance and visual field examination. Conclusion: Current intervention schemes for patients with visual field defects after stroke exhibit diverse content, charaterized by low evidence quality and inconsistent outcome indicators. Further high-quality research is needed to explore optimal training plans and standardize the outcome indicators. In the future, continuous improvement and optimization of rehabilitation strategies should be carried out to establish the best multidisciplinary framework and formulate scientific, systematic and individualized plans.
综述

三维细胞培养在青光眼研究中的应用

Application of three-dimensional culture in the study of glaucoma

:409-415
 
青光眼是全球首位不可逆性致盲性眼病,其特征是视网膜神经节细胞(retina ganglion cells, RGCs)的退行性改变,对全球经济和健康造成了重大影响。其病理变化的分子及生物机制尚不明确,目前青光眼手术和药物治疗仍然局限于将眼压控制在正常范围。小梁网作为房水排出的重要途径,是眼压控制的关键一环。眼压改变引起的视网膜退行性改变是青光眼重要病理过程之一。小梁网及视网膜的体外模型构建是研究青光眼发生发展的主要研究方法。三维培养技术可以使细胞在体外形成一定的空间结构,有利于细胞-细胞及细胞-环境的相互作用,相比传统二维培养,三维培养更加接近体内细胞的生理环境,对于研究疾病的病理生理变化及高通量药物筛选具有重要意义,同时,三维培养更有利于对细胞空间构象变化及其力学性质改变进行研究。三维打印等新技术也在三维细胞培养中有所应用,为三维定制化培养提供技术基础。文章综述了小梁网及视网膜细胞三维培养在青光眼基础研究中的应用研究进展,旨在为进一步探究青光眼病理生理机制提供新的思路。
Glaucoma is the world's first irreversible blinding eye disease, characterized by degenerative changes in retinal ganglion cells (RGCs), which have a significant impact on the global economy and health. The molecular and biological mechanisms of its pathological changes are still unclear. At present, glaucoma surgery and drug therapy are still limited to controlling the intraocular pressure in the normal range. Three-dimensional culture technology can enable cells to form a certain spatial structure in vitro, which is conducive to cell-cell and cell-environment interactions. Compared with traditional two-dimensional culture, three-dimensional culture technology is closer to the physiological environment of cells in vivo, which is of great significance for the study of pathophysiological changes of diseases and high-throughput drug screening. This review discusses the application of trabecular mesh and three-dimensional culture of retinal cells in the basic research of glaucoma, aiming to provide new ideas for further exploring the pathophysiological mechanism of glaucoma.
出版者信息