Review Article

Application of single-cell sequencing in autoimmune uveitis: a comprehensive review

Application of single-cell sequencing in autoimmune uveitis: a comprehensive review

:1-12
 
Autoimmune uveitis is one of the most common inflammatory eye diseases leading to blindness globally. Its etiology is primarily associated with autoimmune responses. Patients with this condition often exhibit complex and chronic disease courses, with a high propensity for recurrence. Current treatments mainly involve corticosteroids and immunosuppressive agents, which, despite their effectiveness, entail significant side effects that severely impact patients' vision and quality of life. There are still unresolved questions regarding the etiology and immunopathogenesis of autoimmune uveitis, and traditional high-throughput sequencing techniques fall short of adequately elucidatingits pathogenic mechanisms at the cellular level. With the continuous advancement of single-cell sequencing technology, an increasing number of studies are leveraging this approach to deeply investigate the pathogenesis of autoimmune uveitis, thereby offering new insights for identifying novel diagnostic and therapeutic targets. This paper reviews the latest applications of single-cell sequencing technology in exploring the pathogenesis of autoimmune uveitis. Through the utilization of this technology, researchers can gain a more comprehensive understanding of cellular-level changes in patients, providing robust support for the search for new therapeutic avenues. These studies offer new directions for the diagnosis and treatment of autoimmune uveitis and provide valuable information for the development of future therapeutic strategies and approaches.
Autoimmune uveitis is one of the most common inflammatory eye diseases leading to blindness globally. Its etiology is primarily associated with autoimmune responses. Patients with this condition often exhibit complex and chronic disease courses, with a high propensity for recurrence. Current treatments mainly involve corticosteroids and immunosuppressive agents, which, despite their effectiveness, entail significant side effects that severely impact patients' vision and quality of life. There are still unresolved questions regarding the etiology and immunopathogenesis of autoimmune uveitis, and traditional high-throughput sequencing techniques fall short of adequately elucidatingits pathogenic mechanisms at the cellular level. With the continuous advancement of single-cell sequencing technology, an increasing number of studies are leveraging this approach to deeply investigate the pathogenesis of autoimmune uveitis, thereby offering new insights for identifying novel diagnostic and therapeutic targets. This paper reviews the latest applications of single-cell sequencing technology in exploring the pathogenesis of autoimmune uveitis. Through the utilization of this technology, researchers can gain a more comprehensive understanding of cellular-level changes in patients, providing robust support for the search for new therapeutic avenues. These studies offer new directions for the diagnosis and treatment of autoimmune uveitis and provide valuable information for the development of future therapeutic strategies and approaches.
Review Article

Advances in single-cell sequencing technology and its application in eye diseases

Advances in single-cell sequencing technology and its application in eye diseases

:1-16
 
Vision serves as the cornerstone of rountine human life activities, wherein approximately 80% of information is perceived visually. Eye diseases, however, frequently culminate in vision impairment or blindness, severely affecting the quality of life. Due to the obscurity of the underlying molecular mechanisms, therapeutic outcomes for various blinding eye diseases remain suboptimal. Over the past decade, the development of single-cell genomics technology has made it possible to obtain multi-dimensional insights into genomes, epigenomes, transcriptomes, and proteomes of tissues and organs at the single-cell level, providing a potent tool for elucidating the molecular mechanisms of eye diseases and advancing precision diagnosis. Meanwhile, single-cell genomics technology has also been harnessed in drug discovery and screening, promising to transform traditional drug development paradigm that is often characterized by high cost [1], time-consuming [2], and substantial failure rate. This review aims to describe the cutting-edge advances in single-cell omics technology  and its applications in precision diagnosis of eye diseases as well as drug discovery and screening.

Vision serves as the cornerstone of rountine human life activities, wherein approximately 80% of information is perceived visually. Eye diseases, however, frequently culminate in vision impairment or blindness, severely affecting the quality of life. Due to the obscurity of the underlying molecular mechanisms, therapeutic outcomes for various blinding eye diseases remain suboptimal. Over the past decade, the development of single-cell genomics technology has made it possible to obtain multi-dimensional insights into genomes, epigenomes, transcriptomes, and proteomes of tissues and organs at the single-cell level, providing a potent tool for elucidating the molecular mechanisms of eye diseases and advancing precision diagnosis. Meanwhile, single-cell genomics technology has also been harnessed in drug discovery and screening, promising to transform traditional drug development paradigm that is often characterized by high cost [1],time-consuming [2], and substantial failure rate. This review aims to describe the cutting-edge advances in single-cell omics technology  and its applications in precision diagnosis of eye diseases as well as drug discovery and screening.
出版者信息