Original Article

Prognostic nomogram for patients with primary conjunctival malignant tumors: a study based on SEER data

Prognostic nomogram for patients with primary conjunctival malignant tumors: a study based on SEER data

:25-36
 
Purpose: To develop a survival prediction model for primary conjunctival malignant tumors.
Methods: Detailed information on cases diagnosed with primary conjunctival malignant tumors from 2000 to 2019 was collected from SEER database.Subsequently,  cases meeting the inclusion criteria were randomly assigned to either the development group (1,216 cases) or validation group (608 cases). Relevant risk factors affecting overall survival (OS) were identified using Cox proportional hazards regression analysis. A nomogram was constructed to predict the 1-year, 3-year, and 5-year survival rates. The concordance index (C index) was calculated to assess the predictive power of the model. Receiver operating characteristic curves (ROC curves) and calibration curves were plotted. The area under the curve (AUC) was measured. Decision curve analysis (DCA) was also applied.
Results: The overall survival rate was 77.8%. Statistically significant differences in the survival time distribution were observed among groups based on age (P < 0.001), histology (P < 0.001), and stage (P = 0.01). According to the multivariate analysis, patients with lymphoma, younger age, and localized lesions exhibited better survival outcomes. The C-index of the constructed model was 0.79. In the training group, the AUC values for predicting 1-year, 3-year, and 5-year mortality were 0.824, 0.796, and 0.815, respectively. In the validation group, age corresponding AU values were 0.750, 0.820, and 0.838. The DCA results demonstrated a significant advantage of the model, while the calibration plots indicated that the predicted OS was in good agreement with the actual OS in both groups. 
Conclusions: This study presents a satisfying survival prediction model for malignant conjunctival tumors.
Purpose: To develop a survival prediction model for primary conjunctival malignant tumors.
Methods: Detailed information on cases diagnosed with primary conjunctival malignant tumors from 2000 to 2019 was collected from SEER database.Subsequently,  cases meeting the inclusion criteria were randomly assigned to either the development group (1,216 cases) or validation group (608 cases). Relevant risk factors affecting overall survival (OS) were identified using Cox proportional hazards regression analysis. A nomogram was constructed to predict the 1-year, 3-year, and 5-year survival rates. The concordance index (C index) was calculated to assess the predictive power of the model. Receiver operating characteristic curves (ROC curves) and calibration curves were plotted. The area under the curve (AUC) was measured. Decision curve analysis (DCA) was also applied.
Results: The overall survival rate was 77.8%. Statistically significant differences in the survival time distribution were observed among groups based on age (P < 0.001), histology (P < 0.001), and stage (P = 0.01). According to the multivariate analysis, patients with lymphoma, younger age, and localized lesions exhibited better survival outcomes. The C-index of the constructed model was 0.79. In the training group, the AUC values for predicting 1-year, 3-year, and 5-year mortality were 0.824, 0.796, and 0.815, respectively. In the validation group, age corresponding AU values were 0.750, 0.820, and 0.838. The DCA results demonstrated a significant advantage of the model, while the calibration plots indicated that the predicted OS was in good agreement with the actual OS in both groups. 
Conclusions: This study presents a satisfying survival prediction model for malignant conjunctival tumors.
Case Report

A novel technique to identify and remove the conjunctival lymphangiectasia using indocyanine green gel

A novel technique to identify and remove the conjunctival lymphangiectasia using indocyanine green gel

:88-92
 
In this case reportit describes a novel technique using indocyanine green gel for the surgical excision of conjunctival lymphangiectasia (CL). CL was found on the nasal side of left eye in a 50-year-old male. Surgical excision of the entire cystic lesion with an intact cyst wall was completed with the assistance of an indocyanine green (ICG) gel. No sutures were used throughout the entire procedure. Subsequent post operative follow-up was uneventful. Herein, we report a novel technique used to facilitate the identifcation and complete removal of an intraocular cystic lesion ensuring an intact cyst wall.
In this case reportit describes a novel technique using indocyanine green gel for the surgical excision of conjunctival lymphangiectasia (CL). CL was found on the nasal side of left eye in a 50-year-old male. Surgical excision of the entire cystic lesion with an intact cyst wall was completed with the assistance of an indocyanine green (ICG) gel. No sutures were used throughout the entire procedure. Subsequent post operative follow-up was uneventful. Herein, we report a novel technique used to facilitate the identifcation and complete removal of an intraocular cystic lesion ensuring an intact cyst wall.
Review Article

Advances in understanding conjunctival goblet cell traits and regenerative processes

Advances in understanding conjunctival goblet cell traits and regenerative processes

:85-96
 
Conjunctival goblet cells are of great significance to the ocular surface. By secreting mucins—particularly MUC5AC—they play a pivotal role in stabilizing the tear film, safeguarding the cornea from environmental insults, and preserving overall ocular homeostasis. Over the past decade, remarkable progress has been made in understanding the distinctive biological characteristics and regenerative potential of these specialized cells, opening novel avenues for treating various ocular surface disorders, ranging from dry eye syndrome and allergic conjunctivitis to more severe conditions such as Stevens-Johnson syndrome. This review comprehensively examines the morphology, function, and regulation of conjunctival goblet cells. Advanced imaging modalities, such as transmission electron microscopy, have provided in-depth insights into their ultrastructure. Densely packed mucin granules and a specialized secretory apparatus have been uncovered, highlighting the cells’ proficiency in producing and releasing MUC5AC. These structural characterizations have significantly enhanced our understanding of how goblet cells contribute to maintaining a stable and protective mucosal barrier, which is crucial for ocular surface integrity. The review further delves into the intricate signaling networks governing the differentiation and regeneration of these cells. Key pathways, including Notch, Wnt/β-catenin, and TGF-β, have emerged as essential regulators of cell fate decisions, ensuring that goblet cells maintain their specialized functions. Critical transcription factors, such as Klf4, Klf5, and SPDEF, have been identified as indispensable for driving the differentiation process and sustaining the mature phenotype of goblet cells. Additionally, the modulatory effects of inflammatory mediators—such as IL-6, IL-13, and TNF-α—and growth factors, such as EGF and FGF, are explored. These molecular insights offer a robust framework for understanding the pathophysiological mechanisms underlying ocular surface diseases, wherein the dysregulation of these processes often results in diminished goblet cell numbers and impaired tear film stability. Innovative methodological approaches have provided a strong impetus to this field. The development of three-dimensional (3D) in vitro culture systems that replicate the native conjunctival microenvironment has enabled more physiologically relevant investigations of goblet cell biology. Moreover, the integration of stem cell technologies—including the use of induced pluripotent stem cells (iPSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs)—has made it possible to generate goblet cell-like epithelia, thereby presenting promising strategies for tissue engineering and regenerative therapies. The application of artificial intelligence in optimizing drug screening and biomaterial scaffold design represents an exciting frontier that may accelerate the translation of these findings into effective clinical interventions. In conclusion, this review underscores the central role of conjunctival goblet cells in preserving ocular surface health and illuminates the transformative potential of emerging regenerative approaches. Continued research focused on deciphering the intricate molecular mechanisms governing goblet cell function and regeneration is essential for developing innovative, targeted therapies that can significantly improve the management of ocular surface diseases and enhance patient quality of life.
Conjunctival goblet cells are of great significance to the ocular surface. By secreting mucins—particularly MUC5AC—they play a pivotal role in stabilizing the tear film, safeguarding the cornea from environmental insults, and preserving overall ocular homeostasis. Over the past decade, remarkable progress has been made in understanding the distinctive biological characteristics and regenerative potential of these specialized cells, opening novel avenues for treating various ocular surface disorders, ranging from dry eye syndrome and allergic conjunctivitis to more severe conditions such as Stevens-Johnson syndrome. This review comprehensively examines the morphology, function, and regulation of conjunctival goblet cells. Advanced imaging modalities, such as transmission electron microscopy, have provided in-depth insights into their ultrastructure. Densely packed mucin granules and a specialized secretory apparatus have been uncovered, highlighting the cells’ proficiency in producing and releasing MUC5AC. These structural characterizations have significantly enhanced our understanding of how goblet cells contribute to maintaining a stable and protective mucosal barrier, which is crucial for ocular surface integrity. The review further delves into the intricate signaling networks governing the differentiation and regeneration of these cells. Key pathways, including Notch, Wnt/β-catenin, and TGF-β, have emerged as essential regulators of cell fate decisions, ensuring that goblet cells maintain their specialized functions. Critical transcription factors, such as Klf4, Klf5, and SPDEF, have been identified as indispensable for driving the differentiation process and sustaining the mature phenotype of goblet cells. Additionally, the modulatory effects of inflammatory mediators—such as IL-6, IL-13, and TNF-α—and growth factors, such as EGF and FGF, are explored. These molecular insights offer a robust framework for understanding the pathophysiological mechanisms underlying ocular surface diseases, wherein the dysregulation of these processes often results in diminished goblet cell numbers and impaired tear film stability. Innovative methodological approaches have provided a strong impetus to this field. The development of three-dimensional (3D) in vitro culture systems that replicate the native conjunctival microenvironment has enabled more physiologically relevant investigations of goblet cell biology. Moreover, the integration of stem cell technologies—including the use of induced pluripotent stem cells (iPSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs)—has made it possible to generate goblet cell-like epithelia, thereby presenting promising strategies for tissue engineering and regenerative therapies. The application of artificial intelligence in optimizing drug screening and biomaterial scaffold design represents an exciting frontier that may accelerate the translation of these findings into effective clinical interventions. In conclusion, this review underscores the central role of conjunctival goblet cells in preserving ocular surface health and illuminates the transformative potential of emerging regenerative approaches. Continued research focused on deciphering the intricate molecular mechanisms governing goblet cell function and regeneration is essential for developing innovative, targeted therapies that can significantly improve the management of ocular surface diseases and enhance patient quality of life.