1、Li M, Wang Y, Liu Z, et al. Females with type 2 diabetes mellitus are
prone to diabetic retinopathy: a twelve-province cross-sectional study
in China[ J]. J Diabetes Res, 2020, 2020: 5814296.Li M, Wang Y, Liu Z, et al. Females with type 2 diabetes mellitus are
prone to diabetic retinopathy: a twelve-province cross-sectional study
in China[ J]. J Diabetes Res, 2020, 2020: 5814296.
2、陈雪珍, 吴慧华, 刘媛媛, 等. 糖尿病视网膜病变患病率的Meta分
析[ J]. 中国公共卫生管理, 2020, 36(4): 460-465.
Chen XZ, Wu HH, Liu YY, et al. A Meta-analysis of prevalence rate
of diabetic retinopathy[ J]. Chin J Public Health Manag, 2020, 36(4):
460-465.陈雪珍, 吴慧华, 刘媛媛, 等. 糖尿病视网膜病变患病率的Meta分
析[ J]. 中国公共卫生管理, 2020, 36(4): 460-465.
Chen XZ, Wu HH, Liu YY, et al. A Meta-analysis of prevalence rate
of diabetic retinopathy[ J]. Chin J Public Health Manag, 2020, 36(4):
460-465.
3、邵哲怡, 李建桥. 糖尿病性视网膜病变脂质代谢的研究进展[ J].
眼科学报, 2022, 37(2): 93-99.
Shao ZY, Li JQ. Emerging insights into lipid metabolism in diabetic
retinopathy[ J]. Eye Sci, 2022, 37(2): 93-99.邵哲怡, 李建桥. 糖尿病性视网膜病变脂质代谢的研究进展[ J].
眼科学报, 2022, 37(2): 93-99.
Shao ZY, Li JQ. Emerging insights into lipid metabolism in diabetic
retinopathy[ J]. Eye Sci, 2022, 37(2): 93-99.
4、Athyros VG, Doumas M, Imprialos KP, et al. Diabetes and lipid
metabolism[ J]. Hormones, 2018, 17(1): 61-67.Athyros VG, Doumas M, Imprialos KP, et al. Diabetes and lipid
metabolism[ J]. Hormones, 2018, 17(1): 61-67.
5、Azad R, Sinha S, Nishant P. Asymmetric diabetic retinopathy[ J].
Indian J Ophthalmol, 2021, 69(11): 3026.Azad R, Sinha S, Nishant P. Asymmetric diabetic retinopathy[ J].
Indian J Ophthalmol, 2021, 69(11): 3026.
6、Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits
angiogenesis in proliferative diabetic retinopathy[ J]. J Clin Endocrinol
Metab, 2020, 105(11): 3404-3415.Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits
angiogenesis in proliferative diabetic retinopathy[ J]. J Clin Endocrinol
Metab, 2020, 105(11): 3404-3415.
7、顾佳怡, 朱曼辉, 桑爱民. 褪黑素在糖尿病视网膜病变中的作用
及机制[ J]. 眼科学报, 2020, 35(3): 192-197.
Gu JY, Zhu MH, Sang AM. Research progress on the role and
mechanism of melatonin in diabetic retinopathy[ J]. Eye Sci, 2020,
35(3): 192-197.顾佳怡, 朱曼辉, 桑爱民. 褪黑素在糖尿病视网膜病变中的作用
及机制[ J]. 眼科学报, 2020, 35(3): 192-197.
Gu JY, Zhu MH, Sang AM. Research progress on the role and
mechanism of melatonin in diabetic retinopathy[ J]. Eye Sci, 2020,
35(3): 192-197.
8、Chiu CJ, Taylor A. Dietary hyperglycemia, glycemic index and
metabolic retinal diseases[ J]. Prog Retin Eye Res, 2011, 30(1): 18-53.Chiu CJ, Taylor A. Dietary hyperglycemia, glycemic index and
metabolic retinal diseases[ J]. Prog Retin Eye Res, 2011, 30(1): 18-53.
9、DeGoma EM, DeGoma RL, Rader DJ. Beyond high-density lipoprotein
cholesterol levels evaluating high-density lipoprotein function as
influenced by novel therapeutic approaches[ J]. J Am Coll Cardiol,
2008, 51(23): 2199-2211.DeGoma EM, DeGoma RL, Rader DJ. Beyond high-density lipoprotein
cholesterol levels evaluating high-density lipoprotein function as
influenced by novel therapeutic approaches[ J]. J Am Coll Cardiol,
2008, 51(23): 2199-2211.
10、Nazih H, Bard JM. Cholesterol, oxysterols and LXRs in breast cancer
pathophysiology[ J]. Int J Mol Sci, 2020, 21(4): 1356.Nazih H, Bard JM. Cholesterol, oxysterols and LXRs in breast cancer
pathophysiology[ J]. Int J Mol Sci, 2020, 21(4): 1356.
11、Zhang X, Wang K, Zhu L, et al. Reverse cholesterol transport pathway
and cholesterol efflux in diabetic retinopathy[ J]. J Diabetes Res, 2021,
2021: 8746114.Zhang X, Wang K, Zhu L, et al. Reverse cholesterol transport pathway
and cholesterol efflux in diabetic retinopathy[ J]. J Diabetes Res, 2021,
2021: 8746114.
12、Wang L, Xu C, Johansen T, et al. SIRT1 - a new mammalian substrate of
nuclear autophagy[ J]. Autophagy, 2021, 17(2): 593-595.Wang L, Xu C, Johansen T, et al. SIRT1 - a new mammalian substrate of
nuclear autophagy[ J]. Autophagy, 2021, 17(2): 593-595.
13、Storti F, Grimm C. Active cholesterol efflux in theRetina and retinal
pigment epithelium[ J]. Adv Exp Med Biol, 2019, 1185: 51-55.Storti F, Grimm C. Active cholesterol efflux in theRetina and retinal
pigment epithelium[ J]. Adv Exp Med Biol, 2019, 1185: 51-55.
14、蒋仲敏, 林殿杰, 叶莘, 等. 循环肿瘤细胞、循环染色体异常细胞
与肺癌早期诊断[ J]. 精准医学杂志, 2020, 35(2): 95-99.
Jiang ZM, Lin DJ, Ye (S/X), et al. Circulating tumor cells, circulating
chromosome abnormal cells and early diagnosis of lung cancer[ J]. J
Precis Med, 2020, 35(2): 95-99.蒋仲敏, 林殿杰, 叶莘, 等. 循环肿瘤细胞、循环染色体异常细胞
与肺癌早期诊断[ J]. 精准医学杂志, 2020, 35(2): 95-99.
Jiang ZM, Lin DJ, Ye (S/X), et al. Circulating tumor cells, circulating
chromosome abnormal cells and early diagnosis of lung cancer[ J]. J
Precis Med, 2020, 35(2): 95-99.
15、Edatt L, Poyyakkara A, Raji GR , et al. Role of sirtuins in tumor
angiogenesis[ J]. Front Oncol, 2019, 9: 1516.Edatt L, Poyyakkara A, Raji GR , et al. Role of sirtuins in tumor
angiogenesis[ J]. Front Oncol, 2019, 9: 1516.
16、Hammer SS, Vieira CP, McFarland D, et al. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction[ J]. Diabetologia,
2021, 64(7): 1674-1689.Hammer SS, Vieira CP, McFarland D, et al. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction[ J]. Diabetologia,
2021, 64(7): 1674-1689.
17、Hammer SS, Beli E, Kady N, et al. The mechanism of diabetic
retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and
liver X receptor[ J]. EBioMedicine, 2017, 22: 181-190.Hammer SS, Beli E, Kady N, et al. The mechanism of diabetic
retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and
liver X receptor[ J]. EBioMedicine, 2017, 22: 181-190.
18、Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: new functions
and therapeutic approaches in cancer[ J]. Biochim Biophys Acta Rev
Cancer, 2020, 1874(1): 188394.Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: new functions
and therapeutic approaches in cancer[ J]. Biochim Biophys Acta Rev
Cancer, 2020, 1874(1): 188394.
19、Yu HS, Hong EH, Shin YU, et al. ATP-binding cassette subfamily A-1
(ABCA1) levels are increased in the aqueous humour of proliferative
diabetic retinopathy patients[ J]. Acta Ophthalmol, 2021, 99(3):
e442-e443.Yu HS, Hong EH, Shin YU, et al. ATP-binding cassette subfamily A-1
(ABCA1) levels are increased in the aqueous humour of proliferative
diabetic retinopathy patients[ J]. Acta Ophthalmol, 2021, 99(3):
e442-e443.
20、丁剑锋, 杨炜, 李璐, 等. 肝X受体激动剂TO901317对糖尿病视
网膜病变大鼠视网膜的保护作用[ J]. 眼科新进展, 2021, 41(8):
712-717.
Ding JF, Yang W, Li L, et al. Protective effect of liver X receptor agonist
TO901317 on the retina of rats with diabetic retinopathy[ J]. Recent
Adv Ophthalmol, 2021, 41(8): 712-717.丁剑锋, 杨炜, 李璐, 等. 肝X受体激动剂TO901317对糖尿病视
网膜病变大鼠视网膜的保护作用[ J]. 眼科新进展, 2021, 41(8):
712-717.
Ding JF, Yang W, Li L, et al. Protective effect of liver X receptor agonist
TO901317 on the retina of rats with diabetic retinopathy[ J]. Recent
Adv Ophthalmol, 2021, 41(8): 712-717.
21、Westerterp M, Tsuchiya K, Tattersall IW, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates
atherosclerosis in mice[ J]. Arterioscler Thromb Vasc Biol, 2016, 36(7):
1328-1337.Westerterp M, Tsuchiya K, Tattersall IW, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates
atherosclerosis in mice[ J]. Arterioscler Thromb Vasc Biol, 2016, 36(7):
1328-1337.
22、Li J, Savransky V, Nanayakkara A, et al. Hyperlipidemia and lipid
peroxidation are dependent on the severity of chronic intermittent
hypoxia[ J]. J Appl Physiol, 2007, 102(2): 557-563.Li J, Savransky V, Nanayakkara A, et al. Hyperlipidemia and lipid
peroxidation are dependent on the severity of chronic intermittent
hypoxia[ J]. J Appl Physiol, 2007, 102(2): 557-563.
23、Gaborit B, Julla JB, Besbes S, et al. Glucagon-like peptide 1 receptor
agonists, diabetic retinopathy and angiogenesis: the AngioSafe type 2
diabetes study[ J]. J Clin Endocrinol Metab, 2020, 105(4): dgz069.Gaborit B, Julla JB, Besbes S, et al. Glucagon-like peptide 1 receptor
agonists, diabetic retinopathy and angiogenesis: the AngioSafe type 2
diabetes study[ J]. J Clin Endocrinol Metab, 2020, 105(4): dgz069.
24、Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond
discovery and development[ J]. Cell, 2019, 176(6): 1248-1264.Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond
discovery and development[ J]. Cell, 2019, 176(6): 1248-1264.
25、Behl T, Kotwani A. Exploring the various aspects of the pathological
role of vascular endothelial growth factor (VEGF) in diabetic
retinopathy[ J]. Pharmacol Res, 2015, 99: 137-148.Behl T, Kotwani A. Exploring the various aspects of the pathological
role of vascular endothelial growth factor (VEGF) in diabetic
retinopathy[ J]. Pharmacol Res, 2015, 99: 137-148.
26、Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven
neuroinflammation compromises BBB leading to memory loss in both
diabetes mellitus (DM) type 1 and type 2 mouse models[ J]. Mol
Neurobiol, 2019, 56(3): 1883-1896.Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven
neuroinflammation compromises BBB leading to memory loss in both
diabetes mellitus (DM) type 1 and type 2 mouse models[ J]. Mol
Neurobiol, 2019, 56(3): 1883-1896.
27、Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces
hyperlipidemia in lean mice[ J]. Circ Res, 2005, 97(7): 698-706.Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces
hyperlipidemia in lean mice[ J]. Circ Res, 2005, 97(7): 698-706.
28、Asai Y, Yamada T, Tsukita S, et al. Activation of the hypoxia inducible
factor 1α subunit pathway in steatotic liver contributes to formation of
cholesterol gallstones[ J]. Gastroenterology, 2017, 152(6): 1521-1535.
e8.Asai Y, Yamada T, Tsukita S, et al. Activation of the hypoxia inducible
factor 1α subunit pathway in steatotic liver contributes to formation of
cholesterol gallstones[ J]. Gastroenterology, 2017, 152(6): 1521-1535.
e8.
29、Zhang D, Lv FL, Wang GH. Effects of HIF-1α on diabetic retinopathy
angiogenesis and VEGF expression[ J]. Eur Rev Med Pharmacol Sci,
2018, 22(16): 5071-5076.Zhang D, Lv FL, Wang GH. Effects of HIF-1α on diabetic retinopathy
angiogenesis and VEGF expression[ J]. Eur Rev Med Pharmacol Sci,
2018, 22(16): 5071-5076.
30、Lappano R, Talia M, Cirillo F, et al. The IL1β-IL1R signaling is
involved in the stimulatory effects triggered by hypoxia in breast cancer
cells and cancer-associated fibroblasts (CAFs)[ J]. J Exp Clin Cancer
Res, 2020, 39(1): 153.Lappano R, Talia M, Cirillo F, et al. The IL1β-IL1R signaling is
involved in the stimulatory effects triggered by hypoxia in breast cancer
cells and cancer-associated fibroblasts (CAFs)[ J]. J Exp Clin Cancer
Res, 2020, 39(1): 153.
31、Hazra S, Rasheed A, Bhatwadekar A, et al. Liver X receptor modulates
diabetic retinopathy outcome in a mouse model of streptozotocin-induced diabetes[ J]. Diabetes, 2012, 61(12): 3270-3279.Hazra S, Rasheed A, Bhatwadekar A, et al. Liver X receptor modulates
diabetic retinopathy outcome in a mouse model of streptozotocin-induced diabetes[ J]. Diabetes, 2012, 61(12): 3270-3279.
32、Zhu ML, Zhao FR, Zhu TT, et al. The antihypertension effect of
hydrogen sulfide (H2S) is induced by activating VEGFR2 signaling
pathway[ J]. Life Sci, 2021, 267: 118831.Zhu ML, Zhao FR, Zhu TT, et al. The antihypertension effect of
hydrogen sulfide (H2S) is induced by activating VEGFR2 signaling
pathway[ J]. Life Sci, 2021, 267: 118831.
33、Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor
in ocular fluid of patients with diabetic retinopathy and other retinal
disorders[ J]. N Engl J Med, 1994, 331(22): 1480-1487.Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor
in ocular fluid of patients with diabetic retinopathy and other retinal
disorders[ J]. N Engl J Med, 1994, 331(22): 1480-1487.
34、Smythe J, Fox A, Fisher N, et al. Measuring angiogenic cytokines,
circulating endothelial cells, and endothelial progenitor cells in
peripheral blood and cord blood: VEGF and CXCL12 correlate with
the number of circulating endothelial progenitor cells in peripheral
blood[ J]. Tissue Eng Part C Methods, 2008, 14(1): 59-67.Smythe J, Fox A, Fisher N, et al. Measuring angiogenic cytokines,
circulating endothelial cells, and endothelial progenitor cells in
peripheral blood and cord blood: VEGF and CXCL12 correlate with
the number of circulating endothelial progenitor cells in peripheral
blood[ J]. Tissue Eng Part C Methods, 2008, 14(1): 59-67.
35、Lessieur EM, Liu H, Saadane A, et al. ICAM-1 on the luminal surface
of endothelial cells is induced to a greater extent in mouse retina than in
other tissues in diabetes[ J]. Diabetologia, 2022, 65(10): 1734-1744.Lessieur EM, Liu H, Saadane A, et al. ICAM-1 on the luminal surface
of endothelial cells is induced to a greater extent in mouse retina than in
other tissues in diabetes[ J]. Diabetologia, 2022, 65(10): 1734-1744.
36、Rom S, Heldt NA, Gajghate S, et al. Hyperglycemia and advanced
glycation end products disrupt BBB and promote occludin and
claudin-5 protein secretion on extracellular microvesicles[ J]. Sci Rep,
2020, 10(1): 7274.Rom S, Heldt NA, Gajghate S, et al. Hyperglycemia and advanced
glycation end products disrupt BBB and promote occludin and
claudin-5 protein secretion on extracellular microvesicles[ J]. Sci Rep,
2020, 10(1): 7274.
37、Lytle KA, Bush NC, Triay JM, et al. Hepatic fatty acid balance and
hepatic fat content in humans with severe obesity[ J]. J Clin Endocrinol
Metab, 2019, 104(12): 6171-6181.Lytle KA, Bush NC, Triay JM, et al. Hepatic fatty acid balance and
hepatic fat content in humans with severe obesity[ J]. J Clin Endocrinol
Metab, 2019, 104(12): 6171-6181.
38、Chen W, Jump DB, Grant MB, et al. Dyslipidemia, but not
hyperglycemia, induces inflammatory adhesion molecules in human
retinal vascular endothelial cells[ J]. Invest Ophthalmol Vis Sci, 2003,
44(11): 5016-5022.Chen W, Jump DB, Grant MB, et al. Dyslipidemia, but not
hyperglycemia, induces inflammatory adhesion molecules in human
retinal vascular endothelial cells[ J]. Invest Ophthalmol Vis Sci, 2003,
44(11): 5016-5022.
39、Usui-Ouchi A, Ouchi, Ebihara N. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular
inflammatory responses of retinal endothelial cells and vascular
endothelial growth factor production in retinal pigmented epithelial
cells[ J]. Int Immunopharmacol, 2017, 52: 70-76.Usui-Ouchi A, Ouchi, Ebihara N. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular
inflammatory responses of retinal endothelial cells and vascular
endothelial growth factor production in retinal pigmented epithelial
cells[ J]. Int Immunopharmacol, 2017, 52: 70-76.
40、Lv Z, Li Y, Wu Y, et al. Association of ICAM-1 and HMGA1 gene
variants with retinopathy in type 2 diabetes mellitus among Chinese
individuals[ J]. Curr Eye Res, 2016, 41(8): 1118-1122.Lv Z, Li Y, Wu Y, et al. Association of ICAM-1 and HMGA1 gene
variants with retinopathy in type 2 diabetes mellitus among Chinese
individuals[ J]. Curr Eye Res, 2016, 41(8): 1118-1122.
41、Bui TM, Wiesolek HL, Sumagin R . ICAM-1: a master regulator
of cellular responses in inflammation, injur y resolution, and
tumorigenesis[ J]. J Leukoc Biol, 2020, 108(3): 787-799.Bui TM, Wiesolek HL, Sumagin R . ICAM-1: a master regulator
of cellular responses in inflammation, injur y resolution, and
tumorigenesis[ J]. J Leukoc Biol, 2020, 108(3): 787-799.
42、Capit%C3%A3o%20M%2C%20Soares%20R.%20Angiogenesis%20and%20inflammation%20crosstalk%20in%20%0Adiabetic%20retinopathy%5B%20J%5D.%20J%20Cell%20Biochem%2C%202016%2C%20117(11)%3A%202443-2453.Capit%C3%A3o%20M%2C%20Soares%20R.%20Angiogenesis%20and%20inflammation%20crosstalk%20in%20%0Adiabetic%20retinopathy%5B%20J%5D.%20J%20Cell%20Biochem%2C%202016%2C%20117(11)%3A%202443-2453.
43、U%C4%9Furlu%20N%2C%20Gerceker%20S%2C%20Y%C3%BClek%20F%2C%20et%20al.%20The%20levels%20of%20the%20circulating%20cellular%20%0Aadhesion%20molecules%20ICAM-1%2C%20VCAM-1%20and%20endothelin-1%20and%20the%20flow-mediated%20vasodilatation%20values%20in%20patients%20with%20type%201%20diabetes%20mellitus%20%0Awith%20early-stage%20diabetic%20retinopathy%5B%20J%5D.%20Intern%20Med%2C%202013%2C%2052(19)%3A%20%0A2173-2178.U%C4%9Furlu%20N%2C%20Gerceker%20S%2C%20Y%C3%BClek%20F%2C%20et%20al.%20The%20levels%20of%20the%20circulating%20cellular%20%0Aadhesion%20molecules%20ICAM-1%2C%20VCAM-1%20and%20endothelin-1%20and%20the%20flow-mediated%20vasodilatation%20values%20in%20patients%20with%20type%201%20diabetes%20mellitus%20%0Awith%20early-stage%20diabetic%20retinopathy%5B%20J%5D.%20Intern%20Med%2C%202013%2C%2052(19)%3A%20%0A2173-2178.
44、Tomkins-Netzer O, Niederer R , Lightman S. The role of statins
in diabetic retinopathy[ J]. Trends Cardiovasc Med, 2022:
S1050-S1738(22)00141-4.Tomkins-Netzer O, Niederer R , Lightman S. The role of statins
in diabetic retinopathy[ J]. Trends Cardiovasc Med, 2022:
S1050-S1738(22)00141-4.
45、Sun H, Cong X, Sun R, et al. Association between the ICAM-1 K469E
polymorphism and diabetic retinopathy in Type 2 diabetes mellitus: a
meta-analysis[ J]. Diabetes Res Clin Pract, 2014, 104(2): e46-e49.Sun H, Cong X, Sun R, et al. Association between the ICAM-1 K469E
polymorphism and diabetic retinopathy in Type 2 diabetes mellitus: a
meta-analysis[ J]. Diabetes Res Clin Pract, 2014, 104(2): e46-e49.