当前,药物临床试验面临着两大难题:数据真实性及相关人员操作规范性。现阶段国内外在药物临床试验方面的监管主要以事后监查为主,在数据质量管理以及操作规划标准的监查方面存在一定的时延性。而区块链通过非对称加密、哈希算法及智能合约等技术,可以在保证受试者隐私信息的前提下,提高政府相关监督机构的监管效率,提升药物临床试验数据管理的透明度;同时,与物联网的紧密结合可以实现对标准操作规范的进一步核查,与人工智能的结合有望实现受试者的自动招募。
Clinical drug trials are confronted with two major issues: first, data authenticity, for instance, if any data falsification is conducted during the whole trial; second, whether the standard of procedure is accordingly conducted throughout the whole trial or not. Currently, both domestic and overseas clinical drug trials are not supervised without delay (ex-post inspection). Blockchain technology can improve the efficiency of Food and Drug Administration and the transparency of trials while the rights and safety of human research subjects are guaranteed by the integrated technology such as chained structure, asymmetry key algorithm, hash algorithm, and smart contract. Furthermore, with the assistance of internet of things (IoT) and artificial intelligence (AI), the actual supervision over the whole trial and automatic recruitment of human research subjects are expected to achieve.
当下,我国眼科的发展存在失衡现象,大城市与农村及偏远地区在眼科相关诊疗设施水平、诊疗技术等方面存在巨大差异,仍需探寻新的智能诊疗模式以解决失衡问题。由于眼球是唯一可以直接观察人体血管和神经的器官,眼部可反映其他脏器的健康状态,部分眼科检查的医学图像可对眼部疾病做出诊断等特点,眼科开展人工智能(artificial intelligence,AI)具有独到的优势。此外,人工智能可在一定程度上提高跨时间空间传递信息的精准度及效率。人工智能在眼科及远程信息传递的优势为解决眼科发展失衡状况提供了助力。本文从眼科人工智能在眼科远程医疗相关应用的角度,主要分析并总结当下我国人工智能在眼科相关疾病远程医疗中的发展程度、所具优势以及存在问题,并讨论眼科人工智能在远程医疗的应用展望。
At present, there is an imbalance in the development of ophthalmology in China. There are huge differences in the level of ophthalmology related facilities, diagnosis and treatment technologies between big cities and rural, remote areas. New intelligent diagnosis and treatment models are still needed to solve the imbalance. Since the eye is the only organ that can directly observe the blood vessels and nerves of the human body, the eye can reflect the health status of other organs and diagnosis of eye diseases based on medical images of some ophthalmic examinations can be made as well as other characteristics. Therefore, the development of artificial intelligence in ophthalmology has unique advantages. In addition, artificial intelligence can improve the accuracy and efficiency of information transmission across time and space to a certain extent. The advantages of artificial intelligence in ophthalmology and telematics are helping to solve the imbalance in ophthalmology development. From the perspective of the application of ophthalmic artificial intelligence in telemedicine, this paper mainly analyzes and summarizes the development degree, advantages and existing problems of artificial intelligence in the telemedicine of ophthalmic diseases in China, and discusses the prospect of the application of ophthalmic artificial intelligence in telemedicine.
目的:分析医学人工智能通识课程“眼科人工智能的研发与应用”的开展效果,为相关医学人工智能通识课程的开展提供参考和借鉴。方法:纵向观察性研究。观察分析2020年秋季学期眼科人工智能的研发与应用通识课程学生人群,课程考核结果以及学生对课程的整体评价。结果:共有118名本科生同学参与了课程学习。其中大部分为低年级临床医学专业本科生。期中考核得分为77.21±10.07,有56位同学(47.46%)达到80分以上。期末考核得分为82.24±6.77,有91位同学(77.12%)达到80分以上。同学对课程的评分为98.76±3.55,超过90%的同学表示课程备课认真、授课条理清晰、表达准确。结论:本课程的顺利进展证明医学人工智能联合教学模式的可行性,理论和实践穿插的教学设置帮助同学们更好地掌握知识技术,完成教学目标。
Objective: To analyze the effectiveness of medical education curriculum named “Development and Application of Ophthalmic Artificial Intelligence”, and provide reference for the development of other related curriculums. Methods: Longitudinal observational study method was adopted. During the fall semester of 2020, we conducted an education curriculum named “Development and Application of Ophthalmic Artificial Intelligence” and analyzed the results of mid-term and final examinations, and curriculum evaluation of students. Results: There were 118 undergraduate students taking the course and most of them were junior students majoring in clinical medicine. The score of the mid-term examination was in the range of 77.2±10.07, and 56 students (47.46%) got more than 80 points. The score of the final examination was in the range of 82.24±6.77, and 91 students (77.12%) got more than 80 points. The score of course evaluation of students was in the range of 98.76±3.55, and more than 90% of the students thought that teachers have made full preparations before class, together with clear teaching logic and accurate expressions in class. Conclusion: The smooth progress of our course proved the feasibility of medical artificial intelligence teaching. The teaching setting interspersed with theory and practice could help students to master knowledge and technology better, so as to achieve the teaching objectives.