Iron ions are essential for normal metabolism, DNA synthesis, and cellular repair in corneal cells. Nevertheless, an excess of these ions can disrupt iron homeostasis, leading to cellular toxicity, damage, and death. Keratoconus, the most prevalent ectatic corneal disorder, is often marked by the Fleischer ring, which indicates an imbalance in iron homeostasis. A review of early studies on keratoconus and iron metabolism suggests that this imbalance may be a potential pathogenic mechanism contributing to the onset and progression of the disease. This article aims to provide a comprehensive overview of normal iron metabolism in the human body and cornea, highlighting the evidence of iron homeostasis imbalance in keratoconus. It also explores potential therapeutic strategies focused on maintaining iron homeostasis, thereby offering novel insights into the treatment of ectatic eye diseases.