您的位置: 首页 > 2024年6月 第39卷 第6期 > 文字全文
2023年7月 第38卷 第7期11
目录

他氟前列素在青光眼治疗中的神经保护作用及其分子机制

Neuroprotective effect of tafluprost in glaucoma treatment and its molecular mechanism

来源期刊: 眼科学报 | 2024年6月 第39卷 第6期 285-290 发布时间:2024-06-28 收稿时间:2024/8/28 16:35:59 阅读量:1009
作者:
关键词:
青光眼他氟前列素视神经保护
glaucoma tafluprost neuroprotection
DOI:
10.12419/24063003
收稿时间:
2024-05-02 
修订日期:
2024-06-05 
接收日期:
2024-06-05 
青光眼是一种以视网膜神经节细胞(retinal ganglion cell, RGC)及其轴突的进行性变性和丢失为主要特征的眼病,是导致视力丧失的最常见原因。尽管其具体的发病机制尚未完全明确,但众所周知,眼内压升高是青光眼进展的主要危险因素。目前,通过药物和手术治疗降低眼内压是控制疾病进展的主要手段。他氟前列素因其能有效长期稳定地降低眼内压,且不良反应轻微、患者依从性高、无明显全身不良反应,已成为治疗原发性开角型青光眼及眼高压症的一线治疗药物。近年来的研究表明,他氟前列素除了具有降低眼内压的效果外,还可能具有神经保护作用。文章对他氟前列素的药理作用及其在神经保护方面的潜在效益进行综述,为开发更有效的治疗青光眼药物提供理论依据和科研基础。然而,目前缺乏充分的临床研究证据支持其神经保护效应,未来研究应进一步探索这一领域,以促进针对视神经保护的药物开发和基于视神经再生的视觉功能重建。
Glaucoma is characterized by the progressive degeneration and loss of retinal ganglion cells (RGC) and their axons,making it one of the most common causes of vision loss. Although the exact underlying mechanisms remain unclear, it is well known that elevated intraocular pressure (IOP) is a major risk factor for the progression of glaucoma. Currently, the primary means of controlling glaucoma involves reducing IOP through medication and surgery. Tafluprost, due to its effective and long-term ability to lower IOP, minimal side effects, high patient compliance, and absence of significant systemic side effects, has become the first-line treatment for primary open-angle glaucoma and ocular hypertension. Recent studies suggest that tafluprost may also have neuroprotective effects beyond its IOP-lowering effects. This article aims to review the pharmacological and potential neuroprotective effects of tafluprost, providing a theoretical basis and research foundation for developing more effective drugs for glaucoma treatment. However, there is still a lack of sufficient clinical evidence to support the neuroprotective effects of tafluprost, and further investigations are required to explore in this field to furnish critical theoretical backing for the development of drugs that target optic nerve protection and facilitate vision restoration through optic nerve regeneration.

文章亮点

       本文综述了实验室研究中报道的他氟前列素的潜在神经保护作用。
       目前仍缺乏足够的临床试验数据来验证他氟前列素在治疗人类青光眼患者中的神经保护效果。
       本文旨在为未来关于视神经保护药物的研发以及基于视神经再生的视觉功能重建提供理论基础。
     
      青光眼是全球首位的不可逆性致盲性眼病,其特征是视网膜神经节细胞(retinal ganglion cells, RGCs)进行性退化和随后不可逆的视力丧失[1]。随着国际社会人口老龄化的加重,预计到2040年青光眼的全球患病人数达到11 180万,极大地增加了患者家庭及国家社会的经济负担[2]。目前,已明确了几种风险因素与青光眼的发生发展密切相关,包括眼内压 (intraocular pressure, IOP)、人种、年龄和家族史[3],但其具体的发病机制尚未阐明。IOP由房水产生和通过两种眼部途径流出之间的平衡决定[4-5],是唯一已知的、可改变的风险因素。然而,在IOP控制良好的情况下,部分青光眼患者的视神经仍可能继续退化。近年来,针对青光眼的治疗逐渐从单纯降低IOP向保护视神经转变,旨在阻止或减缓视神经损伤。
 视神经保护治疗的策略主要包括抗氧化剂的使用、神经营养因子的应用、血流改善药物和抗凋亡药物以及信号通路调节剂等的研究[6-8]。例如,抗氧化剂维生素 C 能降低小鼠的IOP,增加与神经刺激因子、吞噬作用和线粒体腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)生成有关的基因表达,促进了青光眼小鼠模型中视网膜神经节细胞的存活[9]。脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)和胶质源性神经营养因子(glial-derived neurotrophic factor, GDNF)可增强体外 RGC的分化、存活和功能,并改善小鼠模型中 RGC移植的结果。BNDF/GDNF联合治疗不仅能提高供体RGC在视网膜内的存活率和覆盖率,还能对宿主RGC发挥神经保护作用,在视神经病变模型中显示保护视网膜的功能[10]。许多新型青光眼疗法,包括干细胞、基因、纳米药物等,在临床前研究中都显示了前景,但还需要进一步的临床试验来证明其在人类青光眼患者眼中的安全性和有效性[11]
 他氟前列素作为一种前列腺素类似物(prostaglandin analogues, PGA),是原发性开角型青光眼和眼高压的一线治疗药物。越来越多的研究表明,他氟前列素不仅能通过其降IOP作用间接减轻对视神经的压力损伤[12],还可能直接对RGC具有保护作用[13-14]。他氟前列素能够通过多种机制发挥其神经保护作用,包括抗凋亡途径、调节信号通路和改善视功能等[12, 15]。尽管实验室研究显示他氟前列素具有神经保护潜力,但其在人类青光眼患者中的神经保护效果还需要通过更多的临床试验来验证。
 本文总结他氟前列素的药物作用和潜在的神经保护作用,深入理解他氟前列素的药物作用机制,为未来视神经保护药物研发及以视神经再生为基础的视觉功能重建提供理论依据。

1 他氟前列素对神经元的保护作用

 前列腺素类似物能发挥稳定、有效地降低IOP作用,减轻IOP对视神经的机械性压迫作用,延缓疾病进展,有效保存患者视力。另外,其可能依赖或者独立于降低IOP作用,有研究者发现,局部应用他氟前列素滴眼液可通过降低细胞内游离Ca2+浓度,增加视神经乳头和视网膜血流量,发挥潜在的营养眼底视网膜的作用[16]。曾有研究者报道,前列腺素衍生物在体外和体内实验中均具有神经保护作用[12, 14, 17-18]。亦有研究者证实,前列腺素F2α(prostaglandin F2α, PGF2α)能有效保护一些神经元细胞免受应激损伤而凋亡,如RGC-5细胞、视网膜神经胶质祖细胞R28细胞、皮质神经元等[14, 19-22]。他氟前列素与其他前列腺素类似物相比具有更出色的保护作用[13]。前列腺素类似物是如何通过未知的分子机制保护眼底视网膜的功能,引起了研究者越来越多的关注。

1.1 保护神经元免受应激损伤

 谷氨酸可能是介导神经元缺血性损伤的重要物质。有研究者将大鼠皮质神经元与谷氨酸一起孵育,通过检测培养液中乳酸脱氢酶(lactate dehydrogenase, LDH)的释放量来评价细胞损伤的程度,研究结果表明PGF2α较其他前列腺素类药物相比具有显著的细胞保护作用[19]。R28 细胞是永生化的视网膜神经胶质祖细胞,24 h血清剥夺可诱导其凋亡,而前列腺素F2α类似物拉坦前列素能挽救神经胶质细胞免于凋亡[20]。此外,有研究者通过血清剥夺和给予外源性谷氨酸诱导RGC-5细胞凋亡,他氟前列素的治疗不仅增加RGC-5 细胞的活力,还能明显减少含半胱氨酸的天冬氨酸蛋白水解酶3(cysteinyl aspartate specific proteinase 3, Caspase-3) 阳性细胞,抑制外源性谷氨酸诱发的Ca2+内流,他氟前列素的抗RGC凋亡和提高RGC存活率的作用在动物实验小鼠视神经损伤(optic nerve crush, ONC)模型中也得到了验证[12]

1.2 神经保护作用可能依赖FP受体

 有研究者报道了他氟前列素在动物实验中对RGCs以及视网膜结构和功能的保护作用[12, 23],这可能是由于他氟前列素通过降低IOP而产生的间接保护作用。他氟前列素因其分子结构中的芳香环带有氟原子,对虹膜睫状体前列腺素FP受体(prostanoid FP receptor, FPR)的亲和力大约比拉坦前列素强12倍[24]。此外,研究表明PGF2α可通过FP受体-ERK-Nrf2信号转导增强抗氧化基因表达,从而抑制6-羟基多巴胺(6-hydroxydopamine, 6-OHDA)诱导的人神经母细胞瘤 SH-SY5Y 细胞死亡,FP受体可成为抑制活性氧(reactive oxygen species, ROS)介导的神经细胞死亡的潜在靶点[21]

1.3 神经保护作用可能独立于FP受体激活

 根据文献报道和相关单细胞测序结果分析,FP受体主要表达于眼前节,如睫状体的环形肌和胶原结缔组织,很少在视网膜内表达[25-28]。先前的研究表明,PGF2α类似物对于谷氨酸和缺氧诱导的RGC死亡具有独立于降低IOP的RGC保护作用[13]。此外,已有报道指出他氟前列素可与其他前列腺素受体结合,如EP2、EP3和EP4受体,这些受体可能介导神经保护作用[29-31]。并且PGF2α的活性羧酸形式到达眼球后部可能通过有机阴离子转运多肽(organic anion-transporting polypeptides, OATPs),如OATP2A1和OATP2B1,发挥神经保护作用[18, 32-33]。最新的研究表明,在视神经损伤后,通过玻璃体腔注射的他氟前列素能有效提高RGC存活率,这种保护作用可能通过OATP2B1,而独立于IOP降低和FP受体激活作用[15]。明确他氟前列素对视网膜神经元的保护作用将进一步拓宽该药物在临床上的应用范围,但仍缺乏相应的临床试验证据表明此种保护作用独立于降低IOP,并且其具体通过何种通路机制发挥保护作用需要进一步探究。

2 发挥神经保护作用的分子机制

2.1 抗凋亡作用和抑制钙蛋白酶过度激活

 近年来的研究表明,他氟前列素和拉坦前列素可通过依赖环磷酸鸟苷依赖的蛋白激酶(cyclic guanosine monophosphate-dependent protein kinase, cGMP/PKG)通路的抗凋亡作用、激活丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路和降低细胞内Ca2+浓度,明显减少 Caspase-3 阳性RGC-5细胞,减少由血清剥夺和外源谷氨酸诱导的细胞凋亡[12, 17]。同时,他氟前列素和拉坦前列素滴眼治疗能降低视神经损伤后视网膜脱氧核糖核苷酸末端转移酶介导的缺口末端标记(terminal dUTP nick end labeling, TUNEL)阳性RGC细胞的比例,保护RGCs[12, 17]。这表明他氟前列素通过抗凋亡途径发挥保护RGCs的作用。
一项通过玻璃体腔注射含有他氟前列素的药物载体研究发现,他氟前列素在视神经切断损伤后(optic nerve transection, ONT)不影响IOP的变化,并减少了视网膜中α-fodrin的裂解,抑制了钙蛋白酶的过度激活,以及减少了视网膜中c-Jun阳性细胞的数量,阻断细胞凋亡途径,从而减少损伤后RGCs的损失[14]

2.2 PI3K/AKT/mTOR

 近年来,越来越多的研究从明确前列腺素类药物对神经细胞保护作用的分子机制探讨,向实现视神经修复及再生转移。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路在发育中调节蛋白质合成、轴突生长和生长锥形成[34],并且在神经元存活和轴突生长中承担着关键决定角色。mTOR活性由细胞内信号级联反应的平衡决定。如神经营养因子通过作用于细胞膜受体酪氨酸激酶(tyrosine kinase, Trk),激活磷脂肌醇3-激酶(phosphoinositide 3-kinase, PI3K),从而上调mTOR活性[35]
 Zheng等[22]提出,拉坦前列素可提高RGC-5的细胞活力,通过蛋白免疫印迹法发现p-Akt和p-mTOR表达水平升高,促进了神经元的轴突生长。使用前列腺素FP受体抑制剂AL8810、PI3K抑制剂LY294002和mTOR抑制剂西罗莫司均可阻断拉坦前列素所介导的作用。这证明拉坦前列素可以通过FP受体介导的PI3K/AKT/mTOR信号通路调节来促进RGC-5细胞的轴突发芽。然而,由于分化后的RGC-5缺乏原代RGC的性质特征,前列腺素类似物在体内或RGCs原代培养中的促轴突再生作用有待进一步验证。

2.3 Zn2+-mTOR

 中枢神经系统锌稳态失衡可能导致一些神经退行性疾病的发展,如阿尔茨海默病和肌萎缩侧索硬化症[36-37]。事实上,锌有助于促进缺氧缺血性和氧化应激损伤中的神经元死亡[38-40]。此外,有研究表明在发育过程中,中枢神经系统神经元的 mTOR 活性下调,视神经损伤进一步降低mTOR 活性,缺乏 mTOR 信号传导可能是成年中枢神经系统神经元存活和再生的主要内在障碍[41]。锌可通过激活mTOR信号通路,增加突触蛋白的合成和新突触的形成,发挥抗抑郁作用[42]。锌通过调节mTOR信号通路在心血管、胃肠病学、骨科和呼吸等多个领域发挥重要作用[43-46]
最近有研究以视神经损伤动物模型为基础,探究并阐明了他氟前列素在视神经损伤模型中的RGC保护和促轴突再生作用,并探讨了其可能的机制[15]。结果显示他氟前列素通过下调ONC后视网膜内丛状层(intraretinal plexiform layer, IPL)锌离子转运蛋白ZnT-3的表达,减少Zn2+的积累,进一步激活mTOR信号通路,以促进RGC存活及轴突再生。而运用雷帕霉素(mTOR通路的特异性抑制剂)会抑制他氟前列素介导的促视神经再生作用[15]。因此,Zn2+-mTOR信号通路在他氟前列素发挥神经节细胞保护和轴突再生作用中承担重要角色。这一突破性的研究明确了他氟前列素对视网膜神经元的分子作用靶点,可为开发更有效的治疗青光眼药物提供理论依据和研究基础,为RGC修复和视神经再生治疗提供崭新的细胞及分子靶点。

3 总结

 他氟前列素是一种效果持久且稳定的前列腺素类似物,以其显著的降低IOP作用、较少的不良反应及良好的患者依从性,已被广泛应用于临床。其安全性和有效性已通过多项临床试验验证。近年来,研究显示他氟前列素除了降低IOP外,还可能具有潜在的神经保护作用(表1)。然而,未来仍需要进一步研究深入解释他氟前列素在神经保护中的分子机制,以及通过收集和分析相关的临床研究数据明确其独立于IOP降低作用的神经保护效果,为开发靶向治疗药物提供新的细胞及分子靶点,从而推动青光眼药物研发进入新的阶段。

表 1 他氟前列素的神经保护作用
Table 1 The Neuroprotective effects of tafluprost

作者

年份

体内/体外实验

模型

药物

给药方式

作用

机制通路

Cazevieille C, et al[19]

1994

体外

(大鼠皮质神经元)

谷氨酸诱导神经

毒性模型

前列腺素类药物

体外给药

保护细胞免受损伤

减少细胞毒性物质LDH的释放

Kanamori A, 

et al[12]

2009

体内(大鼠)

体外(RGC-5 细胞)

ONC

体外(血清剥夺和谷氨酸诱导毒性模型)

他氟前列

滴眼

提高RGC存活

PKG依赖性抗凋亡作用

减少Ca2+内流

Yamagishi R, et al[13]

2011

体外

(大鼠原代RGC

谷氨酸和缺氧诱导毒性模型

前列腺素类药物

体外给药

提高RGC存活

不依赖于FP受体

Nagata A, 

et al[23]

2014

体内(大鼠)

玻璃体腔注射ET-1诱导视网膜损伤

他氟前列

滴眼

提高RGC存活

Sato K, 

et al[14]

2020

体内(大鼠)

ONT

他氟前列

玻璃体腔注射

提高RGC存活

抑制钙蛋白酶的过度激活

抑制c-Jun的蓄积

Sano A, 

et al[21]

2021

体外(人神经母细胞瘤SH-SY5Y 细胞)

6-OHDA诱导神经毒性模型

PGF2α

体外给药

提高细胞存活

FP-ERK-Nrf2

Wu S, et al[15]

2024

体内(小鼠)

ONC

他氟前列

玻璃体腔注射

提高RGC存活

促进轴突再生

Zn2+-mTOR

(Notes)LDHLacticodehydrogenase,乳酸脱氢酶;ONCOptic Nerve Crush,视神经钳夹伤;ONTOptic Nerve Transection,视神经切断;ET-1Endothelin-1,内皮素-16-OHDA6-hydroxydopamine6-羟基多巴胺。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5.Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5.
2、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
3、McMonnies CW. Glaucoma history and risk factors[ J]. J Optom, 2017,10(2): 71-78. DOI: 10.1016/j.optom.2016.02.003.McMonnies CW. Glaucoma history and risk factors[ J]. J Optom, 2017,10(2): 71-78. DOI: 10.1016/j.optom.2016.02.003.
4、Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review[ J]. Open Ophthalmol J, 2010, 4: 52-59. DOI: 10.2174/ 1874364101004010052.Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review[ J]. Open Ophthalmol J, 2010, 4: 52-59. DOI: 10.2174/ 1874364101004010052.
5、Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[ J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003.Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[ J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003.
6、Jonas JB, Aung T, Bourne RR , et al. Glaucoma[ J]. Lancet, 2017, 390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.Jonas JB, Aung T, Bourne RR , et al. Glaucoma[ J]. Lancet, 2017, 390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.
7、Lusthaus J, Goldberg I. Current management of glaucoma[ J]. Med J Aust, 2019, 210(4): 180-187. DOI: 10.5694/mja2.50020.Lusthaus J, Goldberg I. Current management of glaucoma[ J]. Med J Aust, 2019, 210(4): 180-187. DOI: 10.5694/mja2.50020.
8、Liebmann%20JM%2C%20Cioffi%20GA.%20Nicking%20glaucoma%20with%20nicotinamide%3F%5B%20J%5D.%20N%20Engl%20J%20Med%2C%202017%2C%20376(21)%3A%202079-2081.%20DOI%3A%2010.1056%2FNEJMcibr1702486.Liebmann%20JM%2C%20Cioffi%20GA.%20Nicking%20glaucoma%20with%20nicotinamide%3F%5B%20J%5D.%20N%20Engl%20J%20Med%2C%202017%2C%20376(21)%3A%202079-2081.%20DOI%3A%2010.1056%2FNEJMcibr1702486.
9、Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage[ J]. Life Sci Alliance, 2023, 6(8): e202301976. DOI: 10.26508/lsa.202301976.Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage[ J]. Life Sci Alliance, 2023, 6(8): e202301976. DOI: 10.26508/lsa.202301976.
10、Soucy JR , Kriukov E, Oswald J, et al. Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell sur vival in mice[ J]. bioRxiv, 2024: 2024.03.07.583961. DOI: 10.1101/2024.03.07.583961.Soucy JR , Kriukov E, Oswald J, et al. Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell sur vival in mice[ J]. bioRxiv, 2024: 2024.03.07.583961. DOI: 10.1101/2024.03.07.583961.
11、Ciociola EC, Fernandez E, Kaufmann M, et al. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies[ J]. Curr Opin Ophthalmol, 2024, 35(2): 89-96. DOI: 10.1097/ICU.0000000000001016.Ciociola EC, Fernandez E, Kaufmann M, et al. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies[ J]. Curr Opin Ophthalmol, 2024, 35(2): 89-96. DOI: 10.1097/ICU.0000000000001016.
12、Kanamori A, Naka M, Fukuda M, et al. Tafluprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(10): 1353-1360. DOI: 10.1007/s00417-009-1122-6.Kanamori A, Naka M, Fukuda M, et al. Tafluprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(10): 1353-1360. DOI: 10.1007/s00417-009-1122-6.
13、Yamagishi R , Aihara M, Araie M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction[ J]. Exp Eye Res, 2011, 93(3): 265-270. DOI: 10.1016/j.exer.2011.06.022.Yamagishi R , Aihara M, Araie M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction[ J]. Exp Eye Res, 2011, 93(3): 265-270. DOI: 10.1016/j.exer.2011.06.022.
14、Sato K, Nakagawa Y, Omodaka K, et al. The sustained release of tafluprost with a drug delivery system prevents the axonal injury-induced loss of retinal ganglion cells in rats[ J]. Curr Eye Res, 2020, 45(9): 1114-1123. DOI: 10.1080/02713683.2020.1715446.Sato K, Nakagawa Y, Omodaka K, et al. The sustained release of tafluprost with a drug delivery system prevents the axonal injury-induced loss of retinal ganglion cells in rats[ J]. Curr Eye Res, 2020, 45(9): 1114-1123. DOI: 10.1080/02713683.2020.1715446.
15、Wu S, Liu C, Tang J, et al. Tafluprost promotes axon regeneration after optic nerve crush via Zn2+-mTOR pathway[ J]. Neuropharmacology, 2024, 242: 109746. DOI: 10.1016/j.neuropharm.2023.109746.Wu S, Liu C, Tang J, et al. Tafluprost promotes axon regeneration after optic nerve crush via Zn2+-mTOR pathway[ J]. Neuropharmacology, 2024, 242: 109746. DOI: 10.1016/j.neuropharm.2023.109746.
16、Zhang X, Zhou X, Zhao Y, et al. Effects of tafluprost on ocular blood flow[ J]. Ophthalmol Ther, 2022, 11(6): 1991-2003. DOI: 10.1007/s40123-022-00566-z.Zhang X, Zhou X, Zhao Y, et al. Effects of tafluprost on ocular blood flow[ J]. Ophthalmol Ther, 2022, 11(6): 1991-2003. DOI: 10.1007/s40123-022-00566-z.
17、Kanamori A, Naka M, Fukuda M, et al. Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Exp Eye Res, 2009, 88(3): 535-541. DOI: 10.1016/j.exer.2008.11.012.Kanamori A, Naka M, Fukuda M, et al. Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Exp Eye Res, 2009, 88(3): 535-541. DOI: 10.1016/j.exer.2008.11.012.
18、Yamamoto K, Sato K, Yukita M, et al. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection[ J]. J Neurochem, 2017, 140(3): 495-508. DOI: 10.1111/jnc.13902.Yamamoto K, Sato K, Yukita M, et al. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection[ J]. J Neurochem, 2017, 140(3): 495-508. DOI: 10.1111/jnc.13902.
19、Cazevieille C, Muller A, Meynier F, et al. Protection by prostaglandins from glutamate toxicity in cortical neurons[ J]. Neurochem Int, 1994,24(4): 395-398. DOI: 10.1016/0197-0186(94)90118-x.Cazevieille C, Muller A, Meynier F, et al. Protection by prostaglandins from glutamate toxicity in cortical neurons[ J]. Neurochem Int, 1994,24(4): 395-398. DOI: 10.1016/0197-0186(94)90118-x.
20、Nakanishi Y, Nakamura M, Mukuno H, et al. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase[ J]. Exp Eye Res, 2006, 83(5): 1108-1117. DOI: 10.1016/j.exer.2006.05.018.Nakanishi Y, Nakamura M, Mukuno H, et al. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase[ J]. Exp Eye Res, 2006, 83(5): 1108-1117. DOI: 10.1016/j.exer.2006.05.018.
21、Sano A, Maehara T, Fujimori K. Protection of 6-OHDA neurotoxicity by PGF2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells[ J]. Toxicology, 2021, 450: 152686. DOI: 10.1016/j.tox.2021.152686.Sano A, Maehara T, Fujimori K. Protection of 6-OHDA neurotoxicity by PGF2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells[ J]. Toxicology, 2021, 450: 152686. DOI: 10.1016/j.tox.2021.152686.
22、Zheng J, Feng X, Hou L, et al. Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway[ J]. Cell Mol Neurobiol, 2011, 31(4): 597-604. DOI: 10.1007/s10571-011-9653-x.Zheng J, Feng X, Hou L, et al. Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway[ J]. Cell Mol Neurobiol, 2011, 31(4): 597-604. DOI: 10.1007/s10571-011-9653-x.
23、Nagata A , Omachi K , Higashide T, et al. OCT evaluation of neuroprotective effects of tafluprost on retinal injury after intravitreal injection of endothelin-1 in the rat eye[ J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 1040-1047. DOI: 10.1167/iovs.13-13056.Nagata A , Omachi K , Higashide T, et al. OCT evaluation of neuroprotective effects of tafluprost on retinal injury after intravitreal injection of endothelin-1 in the rat eye[ J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 1040-1047. DOI: 10.1167/iovs.13-13056.
24、Takagi Y, Nakajima T, Shimazaki A , et al. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug[ J]. Exp Eye Res, 2004, 78(4): 767-776. DOI: 10.1016/j.exer.2003.12.007.Takagi Y, Nakajima T, Shimazaki A , et al. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug[ J]. Exp Eye Res, 2004, 78(4): 767-776. DOI: 10.1016/j.exer.2003.12.007.
25、Mukhopadhyay P, Bian L, Yin H, et al. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization[ J]. Invest Ophthalmol Vis Sci, 2001, 42(2): 424-428.Mukhopadhyay P, Bian L, Yin H, et al. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization[ J]. Invest Ophthalmol Vis Sci, 2001, 42(2): 424-428.
26、Ocklind A, Lake S, Wentzel P, et al. Localization of the prostaglandin F2 alpha receptor messenger RNA and protein in the cynomolgus monkey eye[ J]. Invest Ophthalmol Vis Sci, 1996, 37(5): 716-726.Ocklind A, Lake S, Wentzel P, et al. Localization of the prostaglandin F2 alpha receptor messenger RNA and protein in the cynomolgus monkey eye[ J]. Invest Ophthalmol Vis Sci, 1996, 37(5): 716-726.
27、Ocklind A, Lake S, Krook K, et al. Localization of the prostaglandin F2 alpha receptor in rat tissues[ J]. Prostaglandins Leukot Essent Fatty Acids, 1997, 57(6): 527-532. DOI: 10.1016/s0952-3278(97)90555-x.Ocklind A, Lake S, Krook K, et al. Localization of the prostaglandin F2 alpha receptor in rat tissues[ J]. Prostaglandins Leukot Essent Fatty Acids, 1997, 57(6): 527-532. DOI: 10.1016/s0952-3278(97)90555-x.
28、Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[ J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[ J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.
29、Bilak M, Wu L, Wang Q, et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis[ J]. Ann Neurol, 2004, 56(2): 240-248. DOI: 10.1002/ana.20179.Bilak M, Wu L, Wang Q, et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis[ J]. Ann Neurol, 2004, 56(2): 240-248. DOI: 10.1002/ana.20179.
30、Echeverria V, Clerman A, Doré S. Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure[ J]. Eur J Neurosci, 2005, 22(9): 2199-2206. DOI: 10.1111/j.1460-9568.2005.04427.x.Echeverria V, Clerman A, Doré S. Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure[ J]. Eur J Neurosci, 2005, 22(9): 2199-2206. DOI: 10.1111/j.1460-9568.2005.04427.x.
31、Sharif NA, Odani-Kawabata N, Lu F, et al. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma[ J]. Exp Eye Res, 2023, 229: 109415. DOI: 10.1016/j.exer.2023.109415.Sharif NA, Odani-Kawabata N, Lu F, et al. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma[ J]. Exp Eye Res, 2023, 229: 109415. DOI: 10.1016/j.exer.2023.109415.
32、Gao B, Huber RD, Wenzel A, et al. Localization of organic anion transporting polypeptides in the rat and human ciliar y body epithelium[ J]. Exp Eye Res, 2005, 80(1): 61-72. DOI: 10.1016/j.exer.2004.08.013.Gao B, Huber RD, Wenzel A, et al. Localization of organic anion transporting polypeptides in the rat and human ciliar y body epithelium[ J]. Exp Eye Res, 2005, 80(1): 61-72. DOI: 10.1016/j.exer.2004.08.013.
33、Kraft ME, Glaeser H, Mandery K, et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost[ J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2504-2511. DOI: 10.1167/iovs.09-4290.Kraft ME, Glaeser H, Mandery K, et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost[ J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2504-2511. DOI: 10.1167/iovs.09-4290.
34、Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control[ J]. Nat Rev Mol Cell Biol, 2009, 10(5): 307-318. DOI: 10.1038/nrm2672.Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control[ J]. Nat Rev Mol Cell Biol, 2009, 10(5): 307-318. DOI: 10.1038/nrm2672.
35、Morgan-Warren%20PJ%2C%20Berry%20M%2C%20Ahmed%20Z%2C%20et%20al.%20Exploiting%20mTOR%20signaling%3A%20a%20novel%20translatable%20treatment%20strategy%20for%20traumatic%20optic%20neuropathy%3F%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202013%2C%2054(10)%3A%206903-6916.%20DOI%3A%2010.1167%2Fiovs.13-12803.Morgan-Warren%20PJ%2C%20Berry%20M%2C%20Ahmed%20Z%2C%20et%20al.%20Exploiting%20mTOR%20signaling%3A%20a%20novel%20translatable%20treatment%20strategy%20for%20traumatic%20optic%20neuropathy%3F%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202013%2C%2054(10)%3A%206903-6916.%20DOI%3A%2010.1167%2Fiovs.13-12803.
36、Sun AW, Wu MH, Vijayalingam M, et al. The role of zinc in modulating acid-sensing ion channel function[ J]. Biomolecules, 2023, 13(2): 229. DOI: 10.3390/biom13020229.Sun AW, Wu MH, Vijayalingam M, et al. The role of zinc in modulating acid-sensing ion channel function[ J]. Biomolecules, 2023, 13(2): 229. DOI: 10.3390/biom13020229.
37、Wang B, Fang T, Chen H. Zinc and central nervous system disorders[ J]. Nutrients, 2023, 15(9): 2140. DOI: 10.3390/nu15092140.Wang B, Fang T, Chen H. Zinc and central nervous system disorders[ J]. Nutrients, 2023, 15(9): 2140. DOI: 10.3390/nu15092140.
38、Park MK, Choi BY, Kho AR, et al. The protective role of glutathione on zinc-induced neuron death after brain injuries[ J]. Int J Mol Sci, 2023, 24(3): 2950. DOI: 10.3390/ijms24032950.Park MK, Choi BY, Kho AR, et al. The protective role of glutathione on zinc-induced neuron death after brain injuries[ J]. Int J Mol Sci, 2023, 24(3): 2950. DOI: 10.3390/ijms24032950.
39、Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons[ J]. Antioxid Redox Signal, 2011, 15(8): 2249-2263. DOI: 10.1089/ars.2010.3607.Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons[ J]. Antioxid Redox Signal, 2011, 15(8): 2249-2263. DOI: 10.1089/ars.2010.3607.
40、Koh JY, Suh SW, Gwag BJ, et al. The role of zinc in selective neuronal death after transient global cerebral ischemia[ J]. Science, 1996, 272(5264): 1013-1016. DOI: 10.1126/science.272.5264.1013.Koh JY, Suh SW, Gwag BJ, et al. The role of zinc in selective neuronal death after transient global cerebral ischemia[ J]. Science, 1996, 272(5264): 1013-1016. DOI: 10.1126/science.272.5264.1013.
41、Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons[ J]. Nat Neurosci, 2010, 13(9): 1075-1081. DOI: 10.1038/nn.2603.Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons[ J]. Nat Neurosci, 2010, 13(9): 1075-1081. DOI: 10.1038/nn.2603.
42、Szewczyk%20B%2C%20Pochwat%20B%2C%20Rafa%C5%82o%20A%2C%20et%20al.%20Activation%20of%20mTOR%20dependent%20signaling%20pathway%20is%20a%20necessary%20mechanism%20of%20antidepressant-like%20activity%20of%20zinc%5B%20J%5D.%20Neuropharmacology%2C%202015%2C%2099%3A%20517-526.%20DOI%3A%2010.1016%2Fj.neuropharm.2015.08.026.Szewczyk%20B%2C%20Pochwat%20B%2C%20Rafa%C5%82o%20A%2C%20et%20al.%20Activation%20of%20mTOR%20dependent%20signaling%20pathway%20is%20a%20necessary%20mechanism%20of%20antidepressant-like%20activity%20of%20zinc%5B%20J%5D.%20Neuropharmacology%2C%202015%2C%2099%3A%20517-526.%20DOI%3A%2010.1016%2Fj.neuropharm.2015.08.026.
43、Fang L, Roth M, S'Ng CT, et al. Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21(Waf1/Cip1)[ J]. J Nutr Biochem, 2021, 89: 108563. DOI: 10.1016/j.jnutbio.2020.108563.Fang L, Roth M, S'Ng CT, et al. Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21(Waf1/Cip1)[ J]. J Nutr Biochem, 2021, 89: 108563. DOI: 10.1016/j.jnutbio.2020.108563.
44、Guo M, Wang Y, Zhao H, et al. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway[ J]. Aquat Toxicol, 2021, 240: 105986. DOI: 10.1016/j.aquatox.2021.105986.Guo M, Wang Y, Zhao H, et al. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway[ J]. Aquat Toxicol, 2021, 240: 105986. DOI: 10.1016/j.aquatox.2021.105986.
45、Huang X, Huang D, Zhu T, et al. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli[ J]. J Nanobiotechnology, 2021, 19(1): 207. DOI: 10.1186/s12951-021- 00956-8.Huang X, Huang D, Zhu T, et al. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli[ J]. J Nanobiotechnology, 2021, 19(1): 207. DOI: 10.1186/s12951-021- 00956-8.
46、Zhao H, Wang Y, Liu J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation[ J]. Environ Pollut, 2019, 253: 741-748. DOI: 10.1016/j.envpol.2019.07.065.Zhao H, Wang Y, Liu J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation[ J]. Environ Pollut, 2019, 253: 741-748. DOI: 10.1016/j.envpol.2019.07.065.
1、 国家自然科学基金(81870657);广州市科技计划(202201020492);广东省自然科 学基金(2022A1515012168);眼科国家重点实验室开放研究基金(2023KF01);广东省基础与应用基础研究基金 (2024A1515013296)。
This work was supported by the National Natural Science Foundation of China (81870657), Science and Technology Program of Guangzhou of China (202201020492), the Natural Science Foundation of Guangdong Province of China (2022A1515012168), the Open Research Funds of the State Key Laboratory of Ophthalmology (2023KF01), and Guangdong Basic and Applied Basic Research Foundation (2024A1515013296).()
2、 国家自然科学基金(81870657);广州市科技计划(202201020492);广东省自然科 学基金(2022A1515012168);眼科国家重点实验室开放研究基金(2023KF01);广东省基础与应用基础研究基金 (2024A1515013296)。
This work was supported by the National Natural Science Foundation of China (81870657), Science and Technology Program of Guangzhou of China (202201020492), the Natural Science Foundation of Guangdong Province of China (2022A1515012168), the Open Research Funds of the State Key Laboratory of Ophthalmology (2023KF01), and Guangdong Basic and Applied Basic Research Foundation (2024A1515013296).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录