Background: Total lower eyelid defect after eyelid malignancy excision poses a challenge in the surgical management of total lower eyelid reconstruction. We describe a technique of reconstructing total lower eyelid defect, using a skin flap and the residual lower forniceal conjunctiva.
Methods: A retrospective case series review. Five patients had undergone lower eyelid basal cell carcinoma excision. A 3–4 mm margin excision was performed and specimens were sent for paraffin section histological examination. Reconstruction was performed at the same stage, using a skin flap and the residual lower forniceal conjunctiva. A full thickness skin flap is raised from the lateral cheek, with its base at the lateral canthus. Subcutaneous tissues are not included in the skin flap. The lower forniceal conjunctiva is released from the inferior retractors and advanced superiorly to cover the inner surface of the skin flap. The skin flap is transposed to cover the lower eyelid defect and sutured to the soft tissues at the medial end of the defect. The advanced forniceal conjunctiva is sutured to the superior edge of the skin flap forming the new mucocutaneous junction of the eyelid margin.
Results: There were 4 females and 1 male, with a mean age of 74 years (range, 68–80 years). Histological clearance was achieved in all cases. None of the patients developed lagophthalmos, symblepharon or dry eye symptoms. None of the patients required any further revision surgery.
Conclusions: Total lower eyelid defects can be reconstructed using the residual lower fornix conjunctiva and a skin flap.
Abstract: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease of childhood, and juvenile idiopathic associated uveitis (JIA-U) is the most frequently noted extra-articular manifestation. JIA-U can present asymptomatically and lead to ocular complications, so regular screening and monitoring are needed to prevent potentially sight-threatening sequelae. Topical glucocorticoids such as prednisolone acetate are usually the first line of treatment for anterior uveitis associated with JIA-U, but long-term use may be associated with cataract, ocular hypertension and glaucoma. Disease modifying anti-rheumatic drugs (DMARDs) such as methotrexate allow tapering of the corticosteroids to prevent long-term complications. Biologic therapies have been increasingly used as targeted therapies for JIA-U, particularly monoclonal antibodies targeting the proinflammatory cytokine TNF-α such as adalimumab and infliximab. One recent, multicenter, prospective, randomized clinical trial provided evidence of the efficacy of adalimumab with methotrexate for JIA-U compared to methotrexate alone. Another clinical trial studying the interleukin-6 inhibitor tocilizumab for JIA-U showed promise in tapering topical corticosteroids. Additionally, JAK inhibitors are emerging biologic therapies for JIA-U in patients refractory to TNF-α inhibitors, with a clinical trial assessing the efficacy of baricitinib for JIA-U underway. While clinical trials on these novel biologics are limited, further investigation of these agents may provide additional therapeutic options for JIA-U.
Abstract: Glaucoma is a group of eye diseases that seriously threaten human visual health. Increased intraocular pressure is the main clinical manifestation and diagnostic basis of glaucoma and is directly related to increased resistance to aqueous circulation channels. The trabecular meshwork (TM) is a multi-layer spongy tissue that filters aqueous humor. Its structure changes and the filtering capacity decreases, leading to an increase in intraocular pressure. Surgical methods for TM are constantly updated. Compared with traditional glaucoma surgical techniques, such as external trabeculectomy, the development of a new surgical technique—minimally invasive glaucoma surgery (MIGS)—enables the operation to reduce intraocular pressure efficiently while further reducing damage to the eye. MIGS achieves the purpose of surgery mainly by optimizing the TM outflow pathway, uveoscleral outflow pathway, and subconjunctival outflow pathway. A new surgical instrument, the Kahook Dual Blade, appears to optimize the TM outflow pathway in the surgical technique. The Kahook Dual Blade is a new type of angle incision instrument. Because of its unique double-edged design, in the process of goniotomy, it can effectively reduce the damage to the anterior chamber angle structure and accurately remove the appropriate amount of TM so that the aqueous humor can flow out smoothly. Kahook Dual Blade goniotomy has the advantages of avoiding complications and foreign body sensation caused by intraocular implants. The operation time is relatively short, the surgical technique is easy to master, and the TM resection scope can be determined based on the patient’s condition. It can be used to treat some clinically meaningful glaucoma. This article is organized as follows. We present the following article following the Narrative Review reporting checklist.
Abstract: Eyelid surgery is widely and extensively used in facial plastic and reconstructive surgeries. There are many categories of eyelid surgeries, the most common of which include blepharoplasty, ptosis surgery, and eyelid reconstruction. In many cases, these procedures are combined, and there are many different techniques for each type of operation. Upper eyelid blepharoplasty usually includes the excision of skin, preseptal orbicularis oculi muscle, and orbital fat. Common methods of lower eyelid blepharoplasty are the skin-muscle flap, the skin flap, and the transconjunctival. Ptosis surgery is mainly divided into three types: transcutaneous, transconjunctival, and sling surgery. Surgeons often used the Hughes or Cutler-Beard Bridge Flaps in eyelid reconstruction. Different types and methods of surgery have their own advantages and disadvantages, and postoperative complications may occur. Therefore, postoperative complications of eyelid surgeries, such as dry eye symptoms, should be taken into serious consideration. Relevant literature involving these complaints can be found in PubMed by searching the terms “dry eye”, “eyelid”, “surgery”, and other related keywords. Moreover, various ocular surface and tear film alterations may be detected using the Ocular Surface Disease Index (OSDI), tear film breakup time, Schirmer test, fluorescein staining, and lissamine green staining after various eyelid surgeries. As dry eye disease is prevalent in the general population, it is more urgent to figure out what we can learn from these complaints. Further exploration in this field may help surgeons to choose a better surgical method and give an accurate evaluation of the postoperative effect.
Abstract: In a comprehensive literature review, PubMed, Embasem and Web of Science were searched for studies examining targeted therapy of ocular malignant melanomas to present and discuss targeted therapy treatment options of ocular tumors, mainly conjunctival and uveal melanoma (UM). Conjunctival malignant melanomas showed similarities in clinical and genetic aspects with cutaneous melanomas. Many therapies with checkpoint inhibitors already established for cutaneous melanomas may be a treatment option for conjunctival malignant melanomas with shared traits. Existing targeted therapies are for example checkpoint inhibitors like pembrolizumab or nivolumab. As a corollary, due to marked differences in clinics and genetics between UMs and conjunctival melanomas (CMs) or cutaneous melanomas, it has remained elusive whether the available possibilities of molecular targeted therapy will be an option for the therapy of metastasizing UMs. Possible novel ways of treating UM are being explored. Fotemustine or the inoculation of dendritic cells with tumorous RNA or sunitinib in combination with cisplatin and or tamoxifen may be used in future to treat UM. While CM are treatable using targeted therapies, UM have not been researched enough to find working targeted therapy options. Further research has to be done in order to find acceptable treatment options.
Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.