Abstract: Macular neovascularization (MNV) is the hallmark of neovascular age-related macular degeneration (nAMD), one of the leading causes of vision loss in the developed world. The current MNV standard of care including frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections, although has revolutionized favorably the treatment, places a substantial burden on patients, caregivers, and physicians. Brolucizumab is a newly developed single-chain antibody fragment that inhibits activation of VEGF receptor 2 with in vitro affinity and potency comparable to commercially-available anti-VEGF agents. Its small molecular weight and its design allow for high solubility and retinal tissue penetration, and improve bynding affinity to the target. Also a high clearance rate leading to minimal systemic exposure was observed. Brolucizumab has shown similar gains in visual acuity compared with other anti-VEGF molecules but a higher and earlier resolution of nAMD related fluid, achieving sustained macular dryness with longer mantainance injection interval ranging from 8 to 12 weeks after monthly loading doses. Rare cases of ocular inflammation also including retinal vasculitis and retinal vascular occlusions referred to an immune-mediated reaction posed safety concerns on selected patients and mantainance treatment interval shorter than 8 weeks.The present review summarizes several key points including the molecular structure and pharmacokinetics, the preclinical and clinical evidence of brolucizumab administration evaluating its efficacy, tolerability, and safety, extended dosing regimens and other indications still under clinical investigation.
Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina. Currently, there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation. Risuteganib [Luminate (ALG-1001), Allegro Ophthalmics, CA, USA] is an intravitreally administered inhibitor of integrin heterodimers αVβ3, αVβ5, α5β1, and αMβ2. It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema (DME). Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis, inflammation, and vascular permeability. Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity (BCVA) and reduced central macular thickness measured by optical coherence tomography (OCT). There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients, more data are needed before one can truly evaluate its efficacy. This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.
Abstract: Statins are used widely to treat hypercholesterolemia and atherosclerotic cardiovascular disease. They have inflammatory and immunomodulatory effects potentially useful for managing systemic autoimmune diseases such as rheumatoid arthritis, lupus erythematosus and multiple sclerosis. Statins also have anti-oxidative and large-vessel endothelial supportive properties that occur independent of their lipid-lowering effects. Additionally, statins can suppress macrophage and microglial activation responsible for initiating inflammatory cytokine release. More than forty percent of adults aged 65 years or older use statins in the United States and Australia, a prevalence that increases with age. The effects of statin usage on ophthalmic practice are probably underrecognized. Cardiovascular disease and age-related macular degeneration (AMD) share common risk factors, consistent with the “vascular model” of AMD pathogenesis that implicates impaired choroidal circulation in Bruch’s membrane lipoprotein accumulation. AMD has a complex multifactorial pathogenesis involving oxidative stress, choroidal vascular dysfunction, dysregulated complement-cascade-mediated inflammation and pro-inflammatory and pro-angiogenic growth factors. Many of these components are hypothetically amenable to the primary (cholesterol lowering) and secondary (anti-inflammatory, anti-oxidative, anti-vasculopathy) effects of statin use. Experimental studies have been promising, epidemiological trails have produced conflicting results and three prospective clinical trials have been inconclusive at demonstrating the value of statin therapy for delaying or preventing AMD. Cumulative evidence to date has failed to prove conclusively that statins are beneficial for preventing or treating AMD.
Abstract: The purpose of this article is to review current literature and data regarding treatment options for age-related macular degeneration (AMD) related to mitochondrial therapy. This article considers the presence of flavoprotein fluorescence as a potential biomarker to test the effectiveness of the treatments. We focus primarily on two major mitochondrial targets, nuclear factor erythroid 2-related factor (NFE2L2) and PGC-1α, that function in controlling the production and effects of reactive oxidative species (ROS) directly in the mitochondria. PU-91 is an FDA approved drug that directly targets and upregulates PGC-1α in AMD cybrid cell lines. Although neither NFE2L2 nor PGC1-α have yet been tested in clinical trials, their effects have been studied in rodent models and offer promising results. MTP-131, or elamipretide?, and metformin are two drugs in phase II clinical trials that focus on the treatment of advanced, non-exudative AMD. MTP-131 functions by associating with cardiolipin (CL) whereas metformin targets adenosine-monophosphate protein kinase (AMPK) in the mitochondria. The current results of their clinical trials are elucidated in this article. The molecular targets and drugs reviewed in this article show promising results in the treatment of AMD. These targets can be further pursued to improve and refine treatment practices of this diagnosis.
Abstract: Intraocular foreign body residue following ophthalmic surgery is rare but may cause severe postoperative occult inflammation. In some cases, small foreign bodies located in the anterior chamber angle may be missed by follow-up ultrasound biomicroscopy (UBM). We report the case of an elderly female whose right eye was injured by a nail and received corneal repair surgery in our hospital. Eleven days post-surgery, we found a mobile, short, translucent, rod-shaped foreign body in the upper corner of the right eye and another in the iris root at 7 o’clock. Two months post-surgery, the patient consulted a doctor due to right eye redness, pain, and vision loss, which was ultimately shown to be associated with foreign body residue resulting in a delayed postoperative inflammatory response. The patient was cured by surgeries and active anti-inflammatory and anti-infection treatments, but the final diagnosis of the patient was infectious endophthalmitis misdiagnosed as uveitis, which worths our consideration. We also review relevant literature on the differentiation of postoperative infectious endophthalmitis from noninfectious uveitis. It’s a reminder that patients with delayed endophthalmitis after open ocular trauma should not exclude the possibility of intraocular foreign bodies. As well clinicians can distinguish infectious endophthalmitis from uveitis by needle aspiration biopsy or vitrectomy for microbial culture in order to determine the need for antibiotic treatment.
Abstract: Pediatric glaucoma is a potentially sight-threatening disease and is considered the second leading cause of treatable childhood blindness. Pediatric glaucoma is a clinical entity including a wide range of conditions: primary congenital glaucoma, glaucoma secondary to ocular (e.g., aniridia, Peter’s anomaly), or systemic disease (e.g., Sturge Weber) and glaucoma secondary to acquired condition (pseudophakic, traumatic, uveitic glaucoma). The treatment algorithm of childhood glaucoma is a step-by-step approach, often starting with surgery, as in primary congenital glaucoma cases. Medical therapy is also crucial in the management of pediatric glaucoma. Here we reported the results of the randomized, controlled, clinical trials carried out in children treated with topical anti-glaucoma drugs. It is worth knowing that prostaglandin analogues showed an excellent systemic safety profile, while serious systemic events have been reported in children taking topical beta-blockers. Angle surgery is the first surgical option in patients diagnosed with primary congenital glaucoma, with ab interno and ab externo approaches showing similar outcomes. Trabeculectomy in children can be troublesome, as mitomycin C (MMC) can lead to bleb complications and a higher endophthalmitis rate than in adults. Glaucoma drainage devices (GDD) are no longer a last resort and can be considered a suitable option for the management of uncontrolled pediatric glaucoma after angle surgery failure.
Abstract: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease of childhood, and juvenile idiopathic associated uveitis (JIA-U) is the most frequently noted extra-articular manifestation. JIA-U can present asymptomatically and lead to ocular complications, so regular screening and monitoring are needed to prevent potentially sight-threatening sequelae. Topical glucocorticoids such as prednisolone acetate are usually the first line of treatment for anterior uveitis associated with JIA-U, but long-term use may be associated with cataract, ocular hypertension and glaucoma. Disease modifying anti-rheumatic drugs (DMARDs) such as methotrexate allow tapering of the corticosteroids to prevent long-term complications. Biologic therapies have been increasingly used as targeted therapies for JIA-U, particularly monoclonal antibodies targeting the proinflammatory cytokine TNF-α such as adalimumab and infliximab. One recent, multicenter, prospective, randomized clinical trial provided evidence of the efficacy of adalimumab with methotrexate for JIA-U compared to methotrexate alone. Another clinical trial studying the interleukin-6 inhibitor tocilizumab for JIA-U showed promise in tapering topical corticosteroids. Additionally, JAK inhibitors are emerging biologic therapies for JIA-U in patients refractory to TNF-α inhibitors, with a clinical trial assessing the efficacy of baricitinib for JIA-U underway. While clinical trials on these novel biologics are limited, further investigation of these agents may provide additional therapeutic options for JIA-U.