Abstract: Optical coherence tomography (OCT) is an ocular imaging technique that can complement the neuro-ophthalmic assessment, and inform our understanding regarding functional consequences of neuroaxonal injury in the afferent visual pathway. Indeed, OCT has emerged as a surrogate end-point in the diagnosis and follow up of several demyelinating syndromes of the central nervous system (CNS), including optic neuritis (ON) associated with: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies. Recent advancements in enhanced depth imaging (EDI) OCT have distinguished this technique as a new gold standard in the diagnosis of optic disc drusen (ODD). Moreover, OCT may enhance our ability to distinguish cases of papilledema from pseudopapilledema caused by ODD. In the setting of idiopathic intracranial hypertension (IIH), OCT has shown benefit in tracking responses to treatment, with respect to reduced retinal nerve fiber layer (RNFL) measures and morphological changes in the angling of Bruch’s membrane. Longitudinal follow up of OCT measured ganglion cell-inner plexiform layer thickness may be of particular value in managing IIH patients who have secondary optic atrophy. Causes of compressive optic neuropathies may be readily diagnosed with OCT, even in the absence of overt visual field defects. Furthermore, OCT values may offer some prognostic value in predicting post-operative outcomes in these patients. Finally, OCT can be indispensable in differentiating optic neuropathies from retinal diseases in patients presenting with vision loss, and an unrevealing fundus examination. In this review, our over-arching goal is to highlight the potential role of OCT, as an ancillary investigation, in the diagnosis and management of various optic nerve disorders.
Abstract: Pathological retinal neovascularization is the hallmark of primary blinding diseases across all age groups, yet surprisingly little is known about the causative factors. These diseases include diabetic retinopathy and retinopathy of prematurity where progressive decay of retinal vasculature yields zones of neural ischemia. These avascular zones and the hypoxic neurons and glia that reside in them are the source of pro-angiogenic factors that mediate destructive pre-retinal angiogenesis. Central neurons such as retinal ganglion cells (RGCs), which are directly apposed to degenerating vasculature in ischemic retinopathies, require stable metabolic supply for proper function. However, we unexpectedly found that RGCs are resilient to hypoxia/ischemia and a generally compromised metabolic supply and instead of degenerating, trigger protective mechanisms of cellular senescence. Paradoxically, while potentially favoring neuronal survival, the senescent state of RGCs is incompatible with vascular repair as they adopt a senescence-associated secretory phenotype (SASP) that provokes release of a secretome of inflammatory cytokines that drives paracrine senescence and further exacerbates pathological angiogenesis. The mechanisms that lead to retinal cellular senescence and dormancy as well as the therapeutic potential of targeting these pathways will be discussed.
Abstract: The biological mechanisms of eye growth and refractive development are increasingly well characterised, a result of many careful studies that have been carried out over many years. As the outer coat of the eye, the sclera has the ultimate impact on the restraint or facilitation of eye growth, thus any changes in its biochemistry, ultrastructure, gross morphology and/or biomechanical properties are critical in refractive error development and, in particular, the development of myopia. The current review briefly revisits our basic understanding of the structure and biomechanics of the sclera and how these are regulated and modified during eye growth and myopia development. The review then applies this knowledge in considering recent advances in our understanding of how the mechanisms of scleral remodelling may be manipulated or controlled, in order to constrain eye growth and limit the development of myopia, in particular the higher degrees of myopia that lead to vision loss and blindness. In doing so, the review specifically considers recent approaches to the strengthening of the sclera, through collagen cross-linking, scleral transplantation, implantation or injection of biomaterials, or the direct therapeutic targeting and manipulation of the biochemical mechanisms known to be involved in myopia development. These latest approaches to the control of scleral changes in myopia are, where possible, placed in the context of our understanding of scleral biology, in order to bring a more complete understanding of current and future therapeutic interventions in myopia, and their consequences.
Abstract: Optical coherence tomography (OCT) is a technology that is widely used to assess structural abnormalities in the retina for a variety of pediatric conditions. The introduction of this instrument has allowed for widespread access to minimally invasive standardized, reproducible quantified structural assessments of the optic nerve and retina. This has had important implications in pediatric optic neuropathies, populations in whom monitoring of disease activity is essential to making treatment decisions. OCT has had particular relevance for inflammatory optic neuropathies, as onset of an inflammatory optic neuropathy may herald the onset of a chronic inflammatory disorder of the central nervous system (CNS) such as multiple sclerosis, neuromyelitis optica spectrum disorder (aquaporin 4 antibody positive), and myelin oligodendrocyte glycoprotein (MOG) associated disorders. This paper will focus on the application of OCT technology to this group of disorders in pediatrics. After reviewing pediatric-specific anatomic and practical issues pertinent to OCT, we will review knowledge related to the use of OCT in inflammatory pediatric optic neuropathies, with a focus on structural outcomes and their correlation with functional outcome metrics.
Abstract: Hereditary, metabolic and toxic optic neuropathies cause bilateral, central vision loss and therefore can result in severe impairment in visual function. Accurate, early diagnosis is critical, as nutritional and toxic optic neuropathies may be reversible if identified early, and diagnosis of hereditary optic neuropathies can prevent unnecessary invasive workup, provide prognostic information, and allow for effective genetic counseling. Optical coherence tomography (OCT) is a valuable tool that aids in the diagnosis and prognostication of optic neuropathies as it allows for quantification of changes in the retinal ganglion cells (RGCs) and retinal nerve fiber layer (RNFL) over time. We review the characteristic clinical presentations of hereditary, metabolic and toxic optic neuropathies, with an emphasis on OCT findings.
Abstract: Optical coherence tomography (OCT) provides a non-invasive analysis of the retina in vivo. Lesions which compress the anterior visual pathway can cause anterograde and retrograde neuro-degeneration. Retrograde structural changes to the retina can be detected by OCT. Analyzing patterns of change on OCT can guide diagnostic and treatment decisions for lesions compressing the optic nerve and chiasm to minimize loss of visual function. From our review of current literature, it is clear that thinning of both the retinal nerve fiber and ganglion cell layers (GCLs) can indicate compression. These parameters correlate with visual function loss as detected by perimetry. Furthermore, these measurements have shown to be the most reliable biomarkers to date in predicting visual recovery after treatment of these compressive lesions.
Abstract: Optical coherence tomography (OCT) is a widely used non-invasive medical imaging technology that has revolutionized clinical care in ophthalmology. New developments, such as OCT angiography (OCTA) are expected to contribute even further to the widespread use of OCT-based imaging devices in the diagnosis and monitoring of patients with ophthalmic diseases. In recent years, many of the disadvantages such as limited field of view and imaging artefacts have been substantially reduced. Similar to the progress achieved in the assessment of retinal disorders, OCT is expected to change the approach to patients seen in the neuro-ophthalmology clinic. In this article, we review the technical features of OCT and OCT-based imaging techniques, highlighting the specific factors that should be taken into account when interpreting OCT in the field of neuro-ophthalmology.