Background: Pericytes are contractile cells that wrap along the walls of capillaries. In the brain, pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand. During ischemia, it has been suggested that pericytes may constrict capillaries, and that pericytes remain constricted after reperfusion thus resulting in impaired blood flow.
Methods: Here, we used a mouse model of retinal ischemia based on ligation of the central retinal artery to characterize the role of pericytes on capillary constriction. Ischemia was induced in transgenic mice carrying the NG2 promoter driving red fluorescent protein expression to selectively visualize pericytes (line NG2:DsRed).Changes in retinal capillary diameter at 1 hr after ischemia were measured ex vivo in whole-mounted retinas from ischemic and control eyes (n=4–6/group) using a stereological approach. Vessels and pericytes were three-dimensionally reconstructed using IMARIS (Bitplane). Furthermore, we used a novel and minimally invasive two-photon microscopy approach that allowed live imaging of microvasculature changes in the retina.
Results: Our data show a generalized reduction in capillary diameter in ischemic retinas relative to sham-operated controls in all vascular plexus (ischemia: 4.7±0.2 μm, control: 5.2±0.2 μm, student’s t-test, P<0.001). Analysis of the number of capillary constrictions at pericyte locations, visualized in NG2:DsRed mice, demonstrated a substantial increase in ischemic retinas relative to the physiological capillary diameter reductions observed in controls (ischemia: 1,038±277 constrictions at pericyte locations, control: 60±36 constrictions at pericyte locations, student’s t-test, P<0.01). Live imaging using two-photon microscopy confirmed robust capillary constriction at the level of pericytes on retinal capillaries during ischemia (n=6–8/group).
Conclusions: Collectively, our data demonstrate that ischemia promotes rapid pericyte constriction on retinal capillaries causing major microvascular dysfunction in this tissue. To identify the molecular mechanisms underlying the pathological response of pericytes during ischemia, we are currently carrying out experiments in mice and zebrafish to modulate signaling pathways involved in calcium dynamics leading to contractility in these cells.
Background: Rods and cones are critical for light detection. Although there has been considerable work done in elucidating the molecular mechanisms involved in rod development, not much is known about how the cone cell fate decision is made by the multipotent retinal progenitor cells during development. Analysis of the promoter regions of Nrl and trβ2, rod and cone differentiation factors respectively, revealed DNA binding motifs of two POU-domain containing transcription factors, Pou2f1 and Pou2f2. Preliminary experiments showed that Pou2f1/2 are expressed during the peak of cone genesis in the embryonic retina. Therefore, we hypothesize that Pou2f1/2 specify cone cell fate in the developing retina.
Methods: We used immunofluorescence and in situ hybridization to establish the spatiotemporal expression of Pou2f1/2 during retinogenesis. We performed in vivo electroporation in post-natal mice to misexpress Pou2f1/2 and used antibodies specific to proteins expressed in cones such as Rxrγ and S-opsin to count cones. Using ex vivo electroporation of embryonic retinal explants, we knocked out Pou2f1 and Pou2f2 using CRISPR/Cas9 gRNAs at the peak of cone production window. Finally, we transfected post-natal retinal explants with a combination of regulatory elements of Nrl or thrb with control backbone vector, Pou2f1 or Pou2f2 using electroporation.
Results: We found that Pou2f1/2 are expressed in retinal progenitor cells in the developing retina and subsequently in the differentiated cones. Pou2f1/2 misexpression outside the cone genesis window led to an increase in cones at the expense of rods. Pou2f1/2 indel knockouts generated by CRISPR/Cas9 gRNAs led to a decrease in cones and a converse increase in rods. Finally, we found that Pou2f1/2 activate the cis-regulatory module (CRM) of the thrb gene and repress the activity of the CRM of Nrl.
Conclusions: These results uncover novel players that establish the complex gene regulatory network for cone photoreceptor fate specification in the retinal progenitor cells. We anticipate that this work should help us devise improved replacement therapies in the future utilizing stem cells for retinal degenerative diseases such as aged-related macular degeneration (AMD) and Stargardt’s disease.
Background: Decrease of ocular blood flow has been linked to the pathogenesis of ocular diseases such as glaucoma and age-related macular degeneration. Current methods that measure the pulsatile blood flow have major limitations, including the assumption that ocular rigidity is the same in all eyes. Our group has recently developed a new method to measure the pulsatile choroidal volume change by direct visualization of the choroid with OCT imaging and automated segmentation. Our goal in this study is to describe the distribution of PCBF in a healthy Caucasian population.
Methods: Fifty-one subjects were recruited from the Maisonneuve-Rosemont Hospital Ophthalmology Clinic and underwent PCBF measurement in one eye. The distribution of PCBF in healthy eyes was assessed.
Results: The distribution of PCBF among the healthy eyes was found to be 3.94±1.70 μL with this technique.
Conclusions: This study demonstrates the normal range of PCBF values obtained in a healthy Caucasian population. This technique could be used for further investigation of choroid pulsatility and to study glaucoma pathophysiology.
Background: Zellweger spectrum disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major handicaps faced by affected individuals, but treatment for this is supportive only. To test whether we could improve visual function in ZSD, we performed a proof-of-concept trial for PEX1 gene augmentation therapy using the Pex1-G844D mouse model, which bears the equivalent to a common human mutation. This model exhibits a gradual decline in scotopic ffERG response, an always residual photopic ffERG response, diminished visual acuity, and cone and bipolar cell anomalies.
Methods: We administered subretinal injections of a PEX1-containing viral vector (AAV8.CMV.hPEX1.HA) to 2 mouse cohorts of 5 or 9 weeks of age. A GFP-containing vector was used as a control in the contralateral eye of each animal. Efficient expression of the virus was confirmed by retinal histology/immunohistochemistry, and its ability to recover peroxisome import was confirmed in vitro. Preliminary ffERG and optokinetic (OKN) analyses were performed on a subset of animals at 8, 16, and 20 weeks after gene delivery. Final ffERG and OKN measures were performed when each cohort reached 32 weeks of age (23 or 27 weeks post injection).
Results: Preliminary ffERG and OKN analyses at 8 weeks post injection showed mildly better retinal response and visual acuity, respectively, in the PEX1-injected eyes, as did ffERG analysis when each cohort reached 25 weeks of age (16 or 20 weeks after gene delivery). This effect was more pronounced in the cohort treated at 5 weeks of age, when ffERG response is highest in Pex1-G844D mice. At 32 weeks of age, the ffERG response in the PEX1-injected eyes was double that of GFP-injected eyes, on average, though there was no change in OKN. Furthermore, in PEX1-injected eyes the photopic ffERG response improved over time, and the decline in scotopic b-wave amplitude was ameliorated compared to un-injected eyes.
Conclusions: AAV8.CMV.hPEX1.HA was subretinally delivered into the left eye of 5- and 9-week-old Pex1-G844D retina. Successful expression of the protein with no gross histologic side effect was observed. Neither the injection, nor exposure to the AAV8 capsid or the transgenic protein negatively altered the ERG or OKN response. At 5–6 months after gene delivery, therapeutic vector-treated eyes showed improved ERG compared to control eyes, on average, in both the “prevention” and “recovery” cohorts. This implies clinical potential of gene delivery to improve vision in patients with ZSD. Retinal immunohistochemistry (to visualize retinal cell types) and biochemical analyses will be performed on treated and untreated retinas, and may inform the mechanism of ERG improvement.
Background: Retinal pigment epithelium (RPE) is vital for the homeostasis of the subretina including photoreceptors and choroid. Interestingly, our previous results suggested that the recently discovered lactate receptor GPR81 is abundantly expressed in RPE. To date, only one previous study has shown that activating GPR81 could enhance DNA repair by activating HDAC1. Consequently, we investigated whether GPR81 exhibits epigenetic modification in the subretina by using GPR81?/? mice.
Methods: GPR81?/? mice and wide type littermates were generated on a background of C57BL/6J mice. The thicknesses of their choroid were evaluated by immunohistochemistry. Meanwhile, Q-PCR, western blot and choroid sprout assay were performed. In vitro, primary retinal pigment epithelium (pRPE) cells were isolated from mice, and cultured for treatments.
Results: The thickness of choroid was reduced in GPR81?/? mice compared to GPR81+/+ mice, suggesting that GPR81 is important for the integrity of choroid. In the choroid sprout assay, lactate treated RPE/choroid complex showed a significant increase in angiogenesis compared to controls while lactate treated KO RPE/choroid complex showed no difference compared to their controls. For Q-PCR, most of the genes screened elevated their expression in GPR81?/? mice compared to WT mice, suggesting epigenetic modification may exist, which were confirmed by histone acetylation and HDACs activity assay.
Conclusions: Taking together, the lactate receptor GPR81 in RPE is very important for maintaining homeostasis of the subretina. This novel discovery sheds new light on the relationship between metabolism and epigenetic modification.