Retinal neurovascular characteristics for the diagnosis and staging of nondiabetic chronic kidney disease: a diagnostic study

Retinal neurovascular characteristics for the diagnosis and staging of nondiabetic chronic kidney disease: a diagnostic study

:371-388
 
Aims: To identify the characteristic retinal neurovascular changes in patients in different stages of nondiabetic chronic kidney disease (CKD) and to develop a model for the accurate diagnosis of nondiabetic CKD.
Methods: Peripapillary retinal nerve fiber layer (pRNFL) thickness and average macular ganglion cell-inner plexiform layer (GC-IPL) thickness of nondiabetic CKD patients and healthy controls (HC) were evaluated by spectral-domain optical coherence tomography (OCT). The vessel density (VD) and perfusion density (PD) of the macula were obtained from optical coherence tomography angiography (OCTA). The estimated glomerular filtration rate (eGFR) was obtained to access the kidney function of CKD patients. Multiple linear regression models were used to adjust for confounding factors in statistical analyzes. The diagnostic capabilities of the parameters were evaluated by logistic regression models.
Results: 131 nondiabetic CKD patients and 62 HC 
entered the study. eGFR was found significantly associated with parafoveal VD and PD (average PD: β = 0.000 4, Padjusted < 0.001) in various sectors. Thinning of pRNFL (β = -6.725, Padjusted0.001) and GC-IPL (β = -4.542, Padjusted < 0.001), as well as decreased VD (β = -2.107, P- adjusted0.001) and PD (β = -0.057, Padjusted = 0.0328) were found in CKD patients. Thinning of pRNFL and deteriorated perifoveal vasculature were found in early CKD, and the parafoveal and foveal VD significantly declined in advanced CKD. Logistic regression models were employed, and selected neurovascular parameters showed an AUC of 0.853 (95% Confidence Interval [CI]: 0.795 to 0.910) in distinguishing CKD patients from HC.
Conclusions: Distinctive retinal neurovascular 
characteristics could be observed in nondiabetic CKD patients of different severities. Our results suggest that retinal manifestations could be valuable in the screening, diagnosis, and follow-up evaluation of patients with CKD.
Aims: To identify the characteristic retinal neurovascular changes in patients in different stages of nondiabetic chronic kidney disease (CKD) and to develop a model for the accurate diagnosis of nondiabetic CKD.
Methods: Peripapillary retinal nerve fiber layer (pRNFL) thickness and average macular ganglion cell-inner plexiform layer (GC-IPL) thickness of nondiabetic CKD patients and healthy controls (HC) were evaluated by spectral-domain optical coherence tomography (OCT). The vessel density (VD) and perfusion density (PD) of the macula were obtained from optical coherence tomography angiography (OCTA). The estimated glomerular filtration rate (eGFR) was obtained to access the kidney function of CKD patients. Multiple linear regression models were used to adjust for confounding factors in statistical analyzes. The diagnostic capabilities of the parameters were evaluated by logistic regression models.
Results: 131 nondiabetic CKD patients and 62 HC 
entered the study. eGFR was found significantly associated with parafoveal VD and PD (average PD: β = 0.000 4, Padjusted < 0.001) in various sectors. Thinning of pRNFL (β = -6.725, Padjusted < 0.001) and GC-IPL (β = -4.542, Padjusted < 0.001), as well as decreased VD (β = -2.107, Padjusted < 0.001) and PD (β = -0.057, Padjusted = 0.0328) were found in CKD patients. Thinning of pRNFL and deteriorated perifoveal vasculature were found in early CKD, and the parafoveal and foveal VD significantly declined in advanced CKD. Logistic regression models were employed, and selected neurovascular parameters showed an AUC of 0.853 (95% Confidence Interval [CI]: 0.795 to 0.910) in distinguishing CKD patients from HC.
Conclusions: Distinctive retinal neurovascular 
characteristics could be observed in nondiabetic CKD patients of different severities. Our results suggest that retinal manifestations could be valuable in the screening, diagnosis, and follow-up evaluation of patients with CKD.

Classification of congenital cataracts and prospects for treatment and diagnosis

Classification of congenital cataracts and prospects for treatment and diagnosis

:412-418
 
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.
出版者信息