Aims: This study describes vascular abnormalities in X-linked retinoschisis (XLRS) using fundus fluorescein angiography (FFA) and ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to better understand the disease's vascular features and impact. Methods: A retrospective cross-sectional study was conducted on 26 XLRS patients (46 eyes). A comprehensive ophthalmic examination was performed, including FFA and UWF SS-OCTA. FFA abnormalities were divided into peripheral schisis-associated and optic disc-associated types. Results: The mean age of patients was 11.3±6.5 years. Macular schisis appeared in 97.8% of eyes, peripheral schisis in 89.1%, and peripheral bullous schisis (PBS) in 67.39%. Major vascular changes identified by FFA included dendritic capillary dilation/leakage (91.3%), internal residual vessel leakage (78.3%), and capillary dropout/ischemia (71.7%). Minor changes included zonal retinal pigment epithelium (RPE) proliferation (6.5%), bridging vessels (4.4%), and capillary sheathing (4.4%). peripapillary choroidal neovascularization (PPCNV) was noted in 10.9% and situs inversus of optic disc in 13.0% of eyes. Additionally, situs inversusof optic disc and zonal RPE proliferation were novel findings. Major FFA changes correlated with broader PBS (P = 0.045) (P < 0.001) (P = 0.003). Clock hours of PBS were significant predictors for internal residual vessel leakage (OR = 0.30, P = 0.03). No significant correlation was found between gene mutation type and FFA abnormalities(P = 1.000)(P = 0.539). Conclusions: This study highlighted the significant prevalence (95.7%) of vascular abnormalities in XLRS and emphasized the importance of combining FFA with UWF SS-OCTA for comprehensive evaluation, enhancing the understanding of XLRS pathophysiology and aiding in targeted treatment approaches.
Aims: This study describes vascular abnormalities in X-linked retinoschisis (XLRS) using fundus fluorescein angiography (FFA) and ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to better understand the disease's vascular features and impact. Methods: A retrospective cross-sectional study was conducted on 26 XLRS patients (46 eyes). A comprehensive ophthalmic examination was performed, including FFA and UWF SS-OCTA. FFA abnormalities were divided into peripheral schisis-associated and optic disc-associated types. Results: The mean age of patients was 11.3±6.5 years. Macular schisis appeared in 97.8% of eyes, peripheral schisis in 89.1%, and peripheral bullous schisis (PBS) in 67.39%. Major vascular changes identified by FFA included dendritic capillary dilation/leakage (91.3%), internal residual vessel leakage (78.3%), and capillary dropout/ischemia (71.7%). Minor changes included zonal retinal pigment epithelium (RPE) proliferation (6.5%), bridging vessels (4.4%), and capillary sheathing (4.4%). peripapillary choroidal neovascularization (PPCNV) was noted in 10.9% and situs inversus of optic disc in 13.0% of eyes. Additionally, situs inversusof optic disc and zonal RPE proliferation were novel findings. Major FFA changes correlated with broader PBS (P = 0.045) (P < 0.001) (P = 0.003). Clock hours of PBS were significant predictors for internal residual vessel leakage (OR = 0.30, P = 0.03). No significant correlation was found between gene mutation type and FFA abnormalities(P = 1.000)(P = 0.539). Conclusions: This study highlighted the significant prevalence (95.7%) of vascular abnormalities in XLRS and emphasized the importance of combining FFA with UWF SS-OCTA for comprehensive evaluation, enhancing the understanding of XLRS pathophysiology and aiding in targeted treatment approaches.