1、Ferris FL 3rd, Wilkinson CP, Bird A, et al. Clinical
classification of age-related macular degeneration.
Ophthalmology. 2013, 120(4): 844-851. DOI: 10.1016/
j.ophtha.2012.10.036.Ferris FL 3rd, Wilkinson CP, Bird A, et al. Clinical
classification of age-related macular degeneration.
Ophthalmology. 2013, 120(4): 844-851. DOI: 10.1016/
j.ophtha.2012.10.036.
2、M i l l e r J W. A g e - r e l a t e d m a c u l a r d e g e n e r a t i o n
revisited:piecing the puzzle: the LXIX Edward Jackson
memorial lecture. Am J Ophthalmol. 2013, 155(1): 1-35.
e13. DOI: 10.1016/j.ajo.2012.10.018.M i l l e r J W. A g e - r e l a t e d m a c u l a r d e g e n e r a t i o n
revisited:piecing the puzzle: the LXIX Edward Jackson
memorial lecture. Am J Ophthalmol. 2013, 155(1): 1-35.
e13. DOI: 10.1016/j.ajo.2012.10.018.
3、Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus
nomenclature for reporting neovascular age-related
macular degeneration data: consensus on neovascular agerelated macular degeneration nomenclature study group.
Ophthalmology. 2020, 127(5): 616-636. DOI: 10.1016/
j.ophtha.2019.11.004.Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus
nomenclature for reporting neovascular age-related
macular degeneration data: consensus on neovascular agerelated macular degeneration nomenclature study group.
Ophthalmology. 2020, 127(5): 616-636. DOI: 10.1016/
j.ophtha.2019.11.004.
4、Yannuzzi%20LA%2C%20Negr%C3%A3o%20S%2C%20Iida%20T%2C%20et%20al.%20Retinal%20angiomatous%20%0Aproliferation%20in%20age-related%20macular%20degeneration.%20Retina.%20%0A2001%2C%2021(5)%3A416-434.DOI%3A%2010.1097%2F00006982-200110000-%0A00003.Yannuzzi%20LA%2C%20Negr%C3%A3o%20S%2C%20Iida%20T%2C%20et%20al.%20Retinal%20angiomatous%20%0Aproliferation%20in%20age-related%20macular%20degeneration.%20Retina.%20%0A2001%2C%2021(5)%3A416-434.DOI%3A%2010.1097%2F00006982-200110000-%0A00003.
5、Yannuzzi LA, Freund KB, Takahashi BS. Review of retinal
angiomatous proliferation or type 3 neovascularization.
Retina. 2008, 28(3): 375-384. DOI: 10.1097/
IAE.0b013e3181619c55.Yannuzzi LA, Freund KB, Takahashi BS. Review of retinal
angiomatous proliferation or type 3 neovascularization.
Retina. 2008, 28(3): 375-384. DOI: 10.1097/
IAE.0b013e3181619c55.
6、Song SJ, Youm DJ, Chang Y, et al. Age-related macular
degeneration in a screened South Korean population:
prevalence, risk factors, and subtypes. Ophthalmic
Epidemiol. 2009, 16(5): 304-310.Song SJ, Youm DJ, Chang Y, et al. Age-related macular
degeneration in a screened South Korean population:
prevalence, risk factors, and subtypes. Ophthalmic
Epidemiol. 2009, 16(5): 304-310.
7、Luo L, Uehara H, Zhang X, et al. Photoreceptor avascular
privilege is shielded by soluble VEGF receptor-1. Elife.
2013, 2: e00324. DOI: 10.7554/eLife.00324.Luo L, Uehara H, Zhang X, et al. Photoreceptor avascular
privilege is shielded by soluble VEGF receptor-1. Elife.
2013, 2: e00324. DOI: 10.7554/eLife.00324.
8、Tolentino MJ, Miller JW, Gragoudas ES, et al.
Intravitreous injections of vascular endothelial growth
factor produce retinal ischemia and microangiopathy in an
adult primate. Ophthalmology. 1996, 103(11): 1820-1828. DOI: 10.1016/s0161-6420(96)30420-x.Tolentino MJ, Miller JW, Gragoudas ES, et al.
Intravitreous injections of vascular endothelial growth
factor produce retinal ischemia and microangiopathy in an
adult primate. Ophthalmology. 1996, 103(11): 1820-1828. DOI: 10.1016/s0161-6420(96)30420-x.
9、Park S, Chan CC. Von Hippel-Lindau disease (VHL): a
need for a murine model with retinal hemangioblastoma.
Histol Histopathol. 2012, 27(8): 975-984. DOI: 10.14670/
HH-27.975.Park S, Chan CC. Von Hippel-Lindau disease (VHL): a
need for a murine model with retinal hemangioblastoma.
Histol Histopathol. 2012, 27(8): 975-984. DOI: 10.14670/
HH-27.975.
10、Miere A, Querques G, Semoun O, et al. Optical coherence
tomography angiography changes in early type 3
neovascularization after anti-vascular endothe lial growth
factor treatment. Retina. 2017, 37(10): 1873-1879. DOI:
10.1097/IAE.0000000000001447.Miere A, Querques G, Semoun O, et al. Optical coherence
tomography angiography changes in early type 3
neovascularization after anti-vascular endothe lial growth
factor treatment. Retina. 2017, 37(10): 1873-1879. DOI:
10.1097/IAE.0000000000001447.
11、Sacconi R, Battista M, Borrelli E, et al. OCT-a
characterisation of recurrent type 3 macular
neovascularisation. Br J Ophthalmol. 2021, 105(2): 222-
226. DOI: 10.1136/bjophthalmol-2020-316054.Sacconi R, Battista M, Borrelli E, et al. OCT-a
characterisation of recurrent type 3 macular
neovascularisation. Br J Ophthalmol. 2021, 105(2): 222-
226. DOI: 10.1136/bjophthalmol-2020-316054.
12、Daniel E, Shaffer J, Ying GS, et al. Outcomes in eyes with
retinal angiomatous proliferation in the comparison of agerelated macular degeneration treatments trials (CATT).
Ophthalmology. 2016, 123(3): 609-616. DOI: 10.1016/
j.ophtha.2015.10.034.Daniel E, Shaffer J, Ying GS, et al. Outcomes in eyes with
retinal angiomatous proliferation in the comparison of agerelated macular degeneration treatments trials (CATT).
Ophthalmology. 2016, 123(3): 609-616. DOI: 10.1016/
j.ophtha.2015.10.034.
13、Baek J, Lee JH, Kim JY, et al. Geographic atrophy and
activity of neovascularization in retinal angiomatous
proliferation. Invest Ophthalmol Vis Sci. 2016, 57(3):
1500-1505. DOI: 10.1167/iovs.15-18837.Baek J, Lee JH, Kim JY, et al. Geographic atrophy and
activity of neovascularization in retinal angiomatous
proliferation. Invest Ophthalmol Vis Sci. 2016, 57(3):
1500-1505. DOI: 10.1167/iovs.15-18837.
14、Semenza GL. Hydroxylation of HIF-1: oxygen sensing at
the molecular level. Physiology. 2004, 19: 176-182. DOI:
10.1152/physiol.00001.2004.Semenza GL. Hydroxylation of HIF-1: oxygen sensing at
the molecular level. Physiology. 2004, 19: 176-182. DOI:
10.1152/physiol.00001.2004.
15、Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF
hydroxylases. Nat Rev Mol Cell Biol. 2004, 5(5): 343-354.
DOI: 10.1038/nrm1366.Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF
hydroxylases. Nat Rev Mol Cell Biol. 2004, 5(5): 343-354.
DOI: 10.1038/nrm1366.
16、Monson DM, Smith JR, Klein ML, et al. Clinicopathologic
correlation of retinal angiomatous proliferation. Arch
Ophthalmol. 2008, 126(12): 1664-1668. DOI: 10.1001/
archopht.126.12.1664.Monson DM, Smith JR, Klein ML, et al. Clinicopathologic
correlation of retinal angiomatous proliferation. Arch
Ophthalmol. 2008, 126(12): 1664-1668. DOI: 10.1001/
archopht.126.12.1664.
17、Klein ML, Wilson DJ. Clinicopathologic correlation of
choroidal and retinal neovascular lesions in age-related
macular degeneration. Am J Ophthalmol. 2011, 151(1):
161-169. DOI: 10.1016/j.ajo.2010.07.020.Klein ML, Wilson DJ. Clinicopathologic correlation of
choroidal and retinal neovascular lesions in age-related
macular degeneration. Am J Ophthalmol. 2011, 151(1):
161-169. DOI: 10.1016/j.ajo.2010.07.020.
18、Li M , Dolz - Marco R , Messinger JD , et al. Clinicopathologic correlation of anti-vascular endothelial growth factor-treated type 3 neovascularization in agerelated macular degeneration. Ophthalmology. 2018, 125(2): 276-287. DOI: 10.1016/j.ophtha.2017.08.019.Li M , Dolz - Marco R , Messinger JD , et al. Clinicopathologic correlation of anti-vascular endothelial growth factor-treated type 3 neovascularization in agerelated macular degeneration. Ophthalmology. 2018, 125(2): 276-287. DOI: 10.1016/j.ophtha.2017.08.019.
19、Qiang W, Wei R, Chen Y, et al. Clinical pathological
features and current animal models of type 3 macular
neovascularization. Front Neurosci. 2021, 15: 734860.
DOI: 10.3389/fnins.2021.734860.Qiang W, Wei R, Chen Y, et al. Clinical pathological
features and current animal models of type 3 macular
neovascularization. Front Neurosci. 2021, 15: 734860.
DOI: 10.3389/fnins.2021.734860.
20、Kurihara T, Kubota Y, Ozawa Y, et al. Von Hippel-Lindau
protein regulates transition from the fetal to the adult
circulatory system in retina. Development. 2010, 137(9):
1563-1571. DOI:10.1242/dev.049015.Kurihara T, Kubota Y, Ozawa Y, et al. Von Hippel-Lindau
protein regulates transition from the fetal to the adult
circulatory system in retina. Development. 2010, 137(9):
1563-1571. DOI:10.1242/dev.049015.
21、Lange C, Caprara C, Tanimoto N, et al. Retina-specific
activation of a sustained hypoxia-like response leads
to severe retinal degeneration and loss of vision.
Neurobiol Dis. 2011, 41(1): 119-130. DOI: 10.1016/
j.nbd.2010.08.028.Lange C, Caprara C, Tanimoto N, et al. Retina-specific
activation of a sustained hypoxia-like response leads
to severe retinal degeneration and loss of vision.
Neurobiol Dis. 2011, 41(1): 119-130. DOI: 10.1016/
j.nbd.2010.08.028.
22、Wei R, Ren X, Kong H, et al. Rb1/Rbl1/Vhl loss
induces mouse subretinal angiomatous proliferation and
hemangioblastoma. JCI Insight. 2019, 4(22): e127889.
DOI: 10.1172/jci.insight.127889.Wei R, Ren X, Kong H, et al. Rb1/Rbl1/Vhl loss
induces mouse subretinal angiomatous proliferation and
hemangioblastoma. JCI Insight. 2019, 4(22): e127889.
DOI: 10.1172/jci.insight.127889.
23、Chen D, Pacal M, Wenzel P, et al. Division and apoptosis
of E2f-deficient retinal progenitors. Nature. 2009,
462(7275): 925-929. DOI: 10.1038/nature08544.Chen D, Pacal M, Wenzel P, et al. Division and apoptosis
of E2f-deficient retinal progenitors. Nature. 2009,
462(7275): 925-929. DOI: 10.1038/nature08544.
24、Chen D, Livne-bar I, Vanderluit JL, et al. Cell-specific
effects of RB or RB/p107 loss on retinal development
implicate an intrinsically death-resistant cell-of-origin in
retinoblastoma. Cancer Cell. 2004, 5(6): 539-551. DOI:
10.1016/j.ccr.2004.05.025.Chen D, Livne-bar I, Vanderluit JL, et al. Cell-specific
effects of RB or RB/p107 loss on retinal development
implicate an intrinsically death-resistant cell-of-origin in
retinoblastoma. Cancer Cell. 2004, 5(6): 539-551. DOI:
10.1016/j.ccr.2004.05.025.
25、MacPherson D, Conkrite K, Tam M, et al. Murine
bilateral retinoblastoma exhibiting rapid-onset, metastatic
progression and N-myc gene amplification. EMBO J.
2007, 26(3): 784-794. DOI: 10.1038/sj.emboj.7601515.MacPherson D, Conkrite K, Tam M, et al. Murine
bilateral retinoblastoma exhibiting rapid-onset, metastatic
progression and N-myc gene amplification. EMBO J.
2007, 26(3): 784-794. DOI: 10.1038/sj.emboj.7601515.
26、Chen D, Opavsky R, Pacal M, et al. Rb-mediated neuronal
differentiation through cell-cycle-independent regulation
of E2f3a. PLoS Biol. 2007, 5(7): e179. DOI: 10.1371/
journal.pbio.0050179.Chen D, Opavsky R, Pacal M, et al. Rb-mediated neuronal
differentiation through cell-cycle-independent regulation
of E2f3a. PLoS Biol. 2007, 5(7): e179. DOI: 10.1371/
journal.pbio.0050179.
27、Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016,
44(W1): W147-W153. DOI: 10.1093/nar/gkw419.Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016,
44(W1): W147-W153. DOI: 10.1093/nar/gkw419.
28、Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and
collaborative HTML5 gene list enrichment analysis tool.
BMC Bioinformatics. 2013, 14: 128. DOI: 10.1186/1471-
2105-14-128.Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and
collaborative HTML5 gene list enrichment analysis tool.
BMC Bioinformatics. 2013, 14: 128. DOI: 10.1186/1471-
2105-14-128.
29、Piret JP, Mottet D, Raes M, et al. CoCl2, a chemical
inducer of hypoxia-inducible factor-1, and hypoxia
reduce apoptotic cell death in hepatoma cell line HepG2.
AnnNYAcadSci. 2002, 973: 443-447. DOI: 10.1111/
j.1749-6632.2002.tb04680.x.Piret JP, Mottet D, Raes M, et al. CoCl2, a chemical
inducer of hypoxia-inducible factor-1, and hypoxia
reduce apoptotic cell death in hepatoma cell line HepG2.
AnnNYAcadSci. 2002, 973: 443-447. DOI: 10.1111/
j.1749-6632.2002.tb04680.x.
30、Tracy K, Dibling BC, Spike BT, et al. BNIP3 is an RB/
E2F target gene required for hypoxia-induced autophagy.
MolCellBiol. 2007, 27(17): 6229-6242. DOI: 10.1128/
MCB.02246-06.Tracy K, Dibling BC, Spike BT, et al. BNIP3 is an RB/
E2F target gene required for hypoxia-induced autophagy.
MolCellBiol. 2007, 27(17): 6229-6242. DOI: 10.1128/
MCB.02246-06.
31、Qin G, Kishore R, Dolan CM, et al. Cell cycle regulator
E2F1 modulates angiogenesis via p53-dependent
transcriptional control of VEGF. Proc Natl Acad Sci
USA. 2006, 103(29): 11015-11020. DOI: 10.1073/
pnas.0509533103.Qin G, Kishore R, Dolan CM, et al. Cell cycle regulator
E2F1 modulates angiogenesis via p53-dependent
transcriptional control of VEGF. Proc Natl Acad Sci
USA. 2006, 103(29): 11015-11020. DOI: 10.1073/
pnas.0509533103.
32、Bakker WJ, Weijts BG, Westendorp B, et al. HIF proteins
connect the RB-E2F factors to angiogenesis. Transcription.
2013, 4(2): 62-66. DOI: 10.4161/trns.23680.Bakker WJ, Weijts BG, Westendorp B, et al. HIF proteins
connect the RB-E2F factors to angiogenesis. Transcription.
2013, 4(2): 62-66. DOI: 10.4161/trns.23680.
33、Engeland K. Cell cycle arrest through indirect
transcriptional repression by p53: I have a DREAM.
Cell Death Differ. 2018, 25(1): 114-132. DOI: 10.1038/
cdd.2017.172.Engeland K. Cell cycle arrest through indirect
transcriptional repression by p53: I have a DREAM.
Cell Death Differ. 2018, 25(1): 114-132. DOI: 10.1038/
cdd.2017.172.
34、Huang X, Zhang X, Zhao DX, et al. Endothelial hypoxiainducible factor-1α is required for vascular repair and
resolution of inflammatory lung injury through forkhead
box protein M1. Am J Pathol. 2019, 189(8): 1664-1679.
DOI: 10.1016/j.ajpath.2019.04.014.Huang X, Zhang X, Zhao DX, et al. Endothelial hypoxiainducible factor-1α is required for vascular repair and
resolution of inflammatory lung injury through forkhead
box protein M1. Am J Pathol. 2019, 189(8): 1664-1679.
DOI: 10.1016/j.ajpath.2019.04.014.
35、Wang H, Shepard MJ, Zhang C, et al. Deletion of
the von hippel-lindau gene in hemangioblasts causes
hemangioblastoma-like lesions in murine retina. Cancer
Res. 2018, 78(5): 1266-1274. DOI: 10.1158/0008-5472.
CAN-17-1718.Wang H, Shepard MJ, Zhang C, et al. Deletion of
the von hippel-lindau gene in hemangioblasts causes
hemangioblastoma-like lesions in murine retina. Cancer
Res. 2018, 78(5): 1266-1274. DOI: 10.1158/0008-5472.
CAN-17-1718.
36、Wang H, Shepard MJ, Zhang C, et al. Deletion of
the von hippel-lindau gene in hemangioblasts causes
hemangioblastoma-like lesions in murine retina. Cancer
Res. 2018, 78(5): 1266-1274. DOI: 10.1158/0008-5472.
CAN-17-1718.Wang H, Shepard MJ, Zhang C, et al. Deletion of
the von hippel-lindau gene in hemangioblasts causes
hemangioblastoma-like lesions in murine retina. Cancer
Res. 2018, 78(5): 1266-1274. DOI: 10.1158/0008-5472.
CAN-17-1718.
37、Lange CA, Luhmann UF, Mowat FM, et al. Von HippelLindau protein in the RPE is essential for normal ocular
growth and vascular development. Development. 2012,
139(13): 2340-2350. DOI: 10.1242/dev.070813.Lange CA, Luhmann UF, Mowat FM, et al. Von HippelLindau protein in the RPE is essential for normal ocular
growth and vascular development. Development. 2012,
139(13): 2340-2350. DOI: 10.1242/dev.070813.
38、Hu W, Jiang A, Liang J, et al. Expression of VLDLR in the
retina and evolution of subretinal neovascularization in the
knockout mouse model’s retinal angiomatous proliferation.
InvestOphthalmolVisSci. 2008, 49(1): 407-415. DOI:
10.1167/iovs.07-0870.Hu W, Jiang A, Liang J, et al. Expression of VLDLR in the
retina and evolution of subretinal neovascularization in the
knockout mouse model’s retinal angiomatous proliferation.
InvestOphthalmolVisSci. 2008, 49(1): 407-415. DOI:
10.1167/iovs.07-0870.
39、Omarova S, CharvetCD, Reem RE, et al. Abnormal
vascularization in mouse retina with dysregulated retinal
cholesterol homeostasis. J Clin Invest. 2012, 122(8): 3012-
3023. DOI:10.1172/JCI63816.Omarova S, CharvetCD, Reem RE, et al. Abnormal
vascularization in mouse retina with dysregulated retinal
cholesterol homeostasis. J Clin Invest. 2012, 122(8): 3012-
3023. DOI:10.1172/JCI63816.
40、Weinl C, Riehle H, Park D, et al. Endothelial SRF/MRTF
ablation causes vascular disease phenotypes in murine
retinae. J Clin Invest, 2013, 123(5): 2193-2206. DOI:
10.1172/JCI64201.Weinl C, Riehle H, Park D, et al. Endothelial SRF/MRTF
ablation causes vascular disease phenotypes in murine
retinae. J Clin Invest, 2013, 123(5): 2193-2206. DOI:
10.1172/JCI64201.
41、Nagai N, Lundh von Leithner P, Izumi-Nagai K, et al.
Spontaneous CNV in a novel mutant mouse is associated
with early VEGF-A-driven angiogenesis and late-stage
focal edema, neural cell loss, and dysfunction. Invest
Ophthalmol Vis Sci. 2014, 55(6): 3709-3719. DOI:
10.1167/iovs.14-13989.Nagai N, Lundh von Leithner P, Izumi-Nagai K, et al.
Spontaneous CNV in a novel mutant mouse is associated
with early VEGF-A-driven angiogenesis and late-stage
focal edema, neural cell loss, and dysfunction. Invest
Ophthalmol Vis Sci. 2014, 55(6): 3709-3719. DOI:
10.1167/iovs.14-13989.
42、Villacampa P, Liyanage SE, Klaska IP, et al. Stabilization
of myeloid-derived HIFs promotes vascular regeneration
in retinal ischemia. Angiogenesis. 2020, 23(2): 83-90.
DOI: 10.1007/s10456-019-09681-1.Villacampa P, Liyanage SE, Klaska IP, et al. Stabilization
of myeloid-derived HIFs promotes vascular regeneration
in retinal ischemia. Angiogenesis. 2020, 23(2): 83-90.
DOI: 10.1007/s10456-019-09681-1.
43、Harlander%20S%2C%20Sch%C3%B6nenberger%20D%2C%20Toussaint%20NC%2C%20et%20al.%20%0ACombined%20mutation%20in%20Vhl%2C%20Trp53%20and%20Rb1%20causes%20clear%20%0Acell%20renal%20cell%20carcinoma%20in%20mice.%20Nat%20Med.%202017%2C%2023(7)%3A%20%0A869-877.%20DOI%3A%2010.1038%2Fnm.4343.Harlander%20S%2C%20Sch%C3%B6nenberger%20D%2C%20Toussaint%20NC%2C%20et%20al.%20%0ACombined%20mutation%20in%20Vhl%2C%20Trp53%20and%20Rb1%20causes%20clear%20%0Acell%20renal%20cell%20carcinoma%20in%20mice.%20Nat%20Med.%202017%2C%2023(7)%3A%20%0A869-877.%20DOI%3A%2010.1038%2Fnm.4343.
44、Al-Salam S, Al-Salam M, Al Ashari M. Galectin-3: a novel
protein in cerebellar hemangioblastoma. Int J Clin Exp
Pathol. 2013, 6(5): 853-861.Al-Salam S, Al-Salam M, Al Ashari M. Galectin-3: a novel
protein in cerebellar hemangioblastoma. Int J Clin Exp
Pathol. 2013, 6(5): 853-861.