1、Kutluer M, Huang L, Marigo V. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen Res. 2020, 15(10): 1784-1791. DOI: 10.4103/1673-5374.280303.Kutluer M, Huang L, Marigo V. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen Res. 2020, 15(10): 1784-1791. DOI: 10.4103/1673-5374.280303.
2、Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration. Lancet. 2018, 392(10153):1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration. Lancet. 2018, 392(10153):1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
3、Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022, 7(1):135. DOI: 10.1038/s41392-022-00974-4.Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022, 7(1):135. DOI: 10.1038/s41392-022-00974-4.
4、Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007, 449(7164): 804-810. DOI: 10.1038/nature06244.Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007, 449(7164): 804-810. DOI: 10.1038/nature06244.
5、Ursell LK, Haiser HJ, Van Treuren W, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014, 146(6): 1470-1476. DOI:
10.1053/j.gastro.2014.03.001.Ursell LK, Haiser HJ, Van Treuren W, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014, 146(6): 1470-1476. DOI:
10.1053/j.gastro.2014.03.001.
6、Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012, 486(7402): 207-214. DOI: 10.1038/nature11234.Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012, 486(7402): 207-214. DOI: 10.1038/nature11234.
7、Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017, 474(11): 1823-1836. DOI: 10.1042/BCJ20160510.Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017, 474(11): 1823-1836. DOI: 10.1042/BCJ20160510.
8、Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378
9、Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014, 6(237): 237ra65. DOI: 10.1126/scitranslmed.3008599.Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014, 6(237): 237ra65. DOI: 10.1126/scitranslmed.3008599.
10、Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015, 26:
26050. DOI: 10.3402/mehd.v26.26050.Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015, 26:
26050. DOI: 10.3402/mehd.v26.26050.
11、Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011, 108(supplement_1): 4578-4585. DOI: 10.1073/pnas. 1000081107.Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011, 108(supplement_1): 4578-4585. DOI: 10.1073/pnas. 1000081107.
12、Biedermann L, Zeitz J, Mwinyi J, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013, 8(3): e59260. DOI: 10.1371/journal.pone.0059260.Biedermann L, Zeitz J, Mwinyi J, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013, 8(3): e59260. DOI: 10.1371/journal.pone.0059260.
13、Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015, 48: 186-194. DOI: 10.1016/j.bbi.2015.03.016.Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015, 48: 186-194. DOI: 10.1016/j.bbi.2015.03.016.
14、Tyakht AV, Kostryukova ES, Popenko AS, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013, 4(1): 2469. DOI: 10.1038/ncomms3469.Tyakht AV, Kostryukova ES, Popenko AS, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013, 4(1): 2469. DOI: 10.1038/ncomms3469.
15、Trujillo-Vargas%20CM%2C%20Schaefer%20L%2C%20Alam%20J%2C%20et%20al.%20The%20gut-eye-lacrimal%20gland-microbiome%20axis%20in%20Sj%C3%B6gren%20Syndrome.Ocul%20Surf.%202020%2C%2018(2)%3A%20335-344.%20DOI%3A%2010.1016%2Fj.jtos.2019.10.006.Trujillo-Vargas%20CM%2C%20Schaefer%20L%2C%20Alam%20J%2C%20et%20al.%20The%20gut-eye-lacrimal%20gland-microbiome%20axis%20in%20Sj%C3%B6gren%20Syndrome.Ocul%20Surf.%202020%2C%2018(2)%3A%20335-344.%20DOI%3A%2010.1016%2Fj.jtos.2019.10.006.
16、Nakamura%20YK%2C%20Metea%20C%2C%20Lloren%C3%A7%20V%2C%20et%20al.%20A%20diet%20rich%20in%20fermentable%20fiber%20promotes%20robust%20changes%20in%20the%20intestinal%20microbiota%2C%20mitigates%20intestinal%20permeability%2C%20and%20attenuates%20autoimmune%20uveitis.%20Sci%20Rep.%202023%2C%2013(1)%3A%2010806.%20DOI%3A%2010.1038%2Fs41598-023-37062-8.Nakamura%20YK%2C%20Metea%20C%2C%20Lloren%C3%A7%20V%2C%20et%20al.%20A%20diet%20rich%20in%20fermentable%20fiber%20promotes%20robust%20changes%20in%20the%20intestinal%20microbiota%2C%20mitigates%20intestinal%20permeability%2C%20and%20attenuates%20autoimmune%20uveitis.%20Sci%20Rep.%202023%2C%2013(1)%3A%2010806.%20DOI%3A%2010.1038%2Fs41598-023-37062-8.
17、Rowan S, Jiang S, Korem T, et al. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci
U S A. 2017, 114(22): E4472-E4481. DOI: 10.1073/pnas.1702302114.Rowan S, Jiang S, Korem T, et al. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci
U S A. 2017, 114(22): E4472-E4481. DOI: 10.1073/pnas.1702302114.
18、Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018, 9(1):
3209. DOI: 10.1038/s41467-018-05681-9.Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018, 9(1):
3209. DOI: 10.1038/s41467-018-05681-9.
19、Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018, 67(9): 1867-1879. DOI: 10.2337/db18-0158.Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018, 67(9): 1867-1879. DOI: 10.2337/db18-0158.
20、Salvador R, Zhang A, Horai R, et al. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol. 2021, 8:606751. DOI:
10.3389/fcell.2020.606751.Salvador R, Zhang A, Horai R, et al. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol. 2021, 8:606751. DOI:
10.3389/fcell.2020.606751.
21、Peng S, Li JJ, Song W, et al. CRB1-associated retinal degeneration is dependent on bacterial translocation from the gut. Cell. 2024, 187(6): 1387-1401.e13. DOI: 10.1016/j.cell.2024.01.040.Peng S, Li JJ, Song W, et al. CRB1-associated retinal degeneration is dependent on bacterial translocation from the gut. Cell. 2024, 187(6): 1387-1401.e13. DOI: 10.1016/j.cell.2024.01.040.
22、Hosoya KI, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull.
2005, 28(1): 1-8. DOI: 10.1248/bpb.28.1.Hosoya KI, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull.
2005, 28(1): 1-8. DOI: 10.1248/bpb.28.1.
23、Tawfik A, Samra YA, Elsherbiny NM, et al. Implication of hyperhomocysteinemia in blood retinal barrier (BRB) dysfunction. Biomolecules. 2020, 10(8): 1119. DOI:
10.3390/biom10081119.Tawfik A, Samra YA, Elsherbiny NM, et al. Implication of hyperhomocysteinemia in blood retinal barrier (BRB) dysfunction. Biomolecules. 2020, 10(8): 1119. DOI:
10.3390/biom10081119.
24、%C5%A2%C4%83lu%20%C5%9E%2C%20Nicoara%20SD.%20Malfunction%20of%20outer%20retinal%20barrier%20and%20choroid%20in%20the%20occurrence%20and%20progression%20of%20diabetic%20macular%20edema.%20World%20J%20Diabetes.%202021%2C%2012(4)%3A%20437-452.%20%0ADOI%3A%2010.4239%2Fwjd.v12.i4.437.%C5%A2%C4%83lu%20%C5%9E%2C%20Nicoara%20SD.%20Malfunction%20of%20outer%20retinal%20barrier%20and%20choroid%20in%20the%20occurrence%20and%20progression%20of%20diabetic%20macular%20edema.%20World%20J%20Diabetes.%202021%2C%2012(4)%3A%20437-452.%20%0ADOI%3A%2010.4239%2Fwjd.v12.i4.437.
25、Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses. 2012, 78(4): 505-510. DOI: 10.1016/j.mehy.2012.01.018.Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses. 2012, 78(4): 505-510. DOI: 10.1016/j.mehy.2012.01.018.
26、Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012, 24(6): 503-512. DOI:
10.1111/j.1365-2982.2012.01921.xCamilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012, 24(6): 503-512. DOI:
10.1111/j.1365-2982.2012.01921.x
27、Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015, 107(11):
686-696. DOI: 10.17235/reed.2015.3846/2015.Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015, 107(11):
686-696. DOI: 10.17235/reed.2015.3846/2015.
28、Salim%20SY%2C%20S%C3%B6derholm%20JD.%20Importance%20of%20disrupted%20intestinal%20barrier%20in%20inflammatory%20bowel%20diseases.%20Inflamm%20Bowel%20Dis.%202011%2C%2017(1)%3A%20362-381.%20DOI%3A%2010.1002%2Fibd.21403.Salim%20SY%2C%20S%C3%B6derholm%20JD.%20Importance%20of%20disrupted%20intestinal%20barrier%20in%20inflammatory%20bowel%20diseases.%20Inflamm%20Bowel%20Dis.%202011%2C%2017(1)%3A%20362-381.%20DOI%3A%2010.1002%2Fibd.21403.
29、Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009, 124(1): 3-20;quiz 21-22. DOI:
10.1016/j.jaci.2009.05.038.Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009, 124(1): 3-20;quiz 21-22. DOI:
10.1016/j.jaci.2009.05.038.
30、Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 2022, 23(9): 4883. DOI: 10.3390/ijms23094883.Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 2022, 23(9): 4883. DOI: 10.3390/ijms23094883.
31、Broadgate S, Yu J, Downes SM, et al. Unravelling the genetics of inherited retinal dystrophies: past, present and future. Prog Retin Eye Res. 2017, 59: 53-96. DOI:
10.1016/j.preteyeres.2017.03.003.Broadgate S, Yu J, Downes SM, et al. Unravelling the genetics of inherited retinal dystrophies: past, present and future. Prog Retin Eye Res. 2017, 59: 53-96. DOI:
10.1016/j.preteyeres.2017.03.003.
32、Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006, 368(9549): 1795-1809. DOI: 10.1016/s0140-6736(06)69740-7.Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006, 368(9549): 1795-1809. DOI: 10.1016/s0140-6736(06)69740-7.
33、Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021, 104(4): 444-454. DOI: 10.1080/08164622.2021.1880863.Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021, 104(4): 444-454. DOI: 10.1080/08164622.2021.1880863.
34、Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res. 2022, 86: 100975.
DOI: 10.1016/j.preteyeres.2021.100975.Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res. 2022, 86: 100975.
DOI: 10.1016/j.preteyeres.2021.100975.
35、Ikelle L, Al-Ubaidi MR, Naash MI. Pluripotent stem cells for the treatment of retinal degeneration: current strategies and future directions. Front Cell Dev Biol. 2020, 8: 743.
DOI: 10.3389/fcell.2020.00743.Ikelle L, Al-Ubaidi MR, Naash MI. Pluripotent stem cells for the treatment of retinal degeneration: current strategies and future directions. Front Cell Dev Biol. 2020, 8: 743.
DOI: 10.3389/fcell.2020.00743.
36、Dalkara D, Goureau O, Marazova K, et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther, 2016, 27(2): 134-147. DOI: 10.1089/hum.2015.147.Dalkara D, Goureau O, Marazova K, et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther, 2016, 27(2): 134-147. DOI: 10.1089/hum.2015.147.
37、Ramlogan-Steel CA, Murali A, Andrzejewski S, et al. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019, 47(4): 521-536. DOI: 10.1111/ceo.13416.Ramlogan-Steel CA, Murali A, Andrzejewski S, et al. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019, 47(4): 521-536. DOI: 10.1111/ceo.13416.
38、Ofri R, Ross M. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res. 2021, 16(9): 1751. DOI: 10.4103/1673-5374.306063.Ofri R, Ross M. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res. 2021, 16(9): 1751. DOI: 10.4103/1673-5374.306063.
39、Frederick A, Sullivan J, Liu L, et al. Engineered capsids for efficient gene delivery to the retina and cornea. Hum Gene Ther. 2020, 31(13-14): 756-774. DOI: 10.1089/hum.2020.070.Frederick A, Sullivan J, Liu L, et al. Engineered capsids for efficient gene delivery to the retina and cornea. Hum Gene Ther. 2020, 31(13-14): 756-774. DOI: 10.1089/hum.2020.070.
40、Huang CH, Yang CM, Yang CH, et al. Leber’s congenital amaurosis: current concepts of genotype-phenotype correlations. Genes. 2021, 12(8): 1261. DOI: 10.3390/
genes12081261.Huang CH, Yang CM, Yang CH, et al. Leber’s congenital amaurosis: current concepts of genotype-phenotype correlations. Genes. 2021, 12(8): 1261. DOI: 10.3390/
genes12081261.
41、den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res, 2008, 27(4): 391-419.
DOI: 10.1016/j.preteyeres.2008.05.003.den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res, 2008, 27(4): 391-419.
DOI: 10.1016/j.preteyeres.2008.05.003.
42、Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci. 2015, 56(6): 3642.DOI: 10.1167/iovs.14-15972.Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci. 2015, 56(6): 3642.DOI: 10.1167/iovs.14-15972.
43、van Soest S, Westerveld A, de Jong PT, et al. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol. 1999, 43(4): 321-334. DOI: 10.1016/s0039-6257(98)00046-0.van Soest S, Westerveld A, de Jong PT, et al. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol. 1999, 43(4): 321-334. DOI: 10.1016/s0039-6257(98)00046-0.
44、Dias MF, Joo K, Kemp JA, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Prog Retin Eye Res, 2018, 63:
107-131. DOI: 10.1016/j.preteyeres.2017.10.004.Dias MF, Joo K, Kemp JA, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Prog Retin Eye Res, 2018, 63:
107-131. DOI: 10.1016/j.preteyeres.2017.10.004.
45、Jordan SA, Farrar GJ, Kenna P, et al. Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet. 1993, 4(1): 54-58. DOI: 10.1038/ng0593-54.Jordan SA, Farrar GJ, Kenna P, et al. Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet. 1993, 4(1): 54-58. DOI: 10.1038/ng0593-54.
46、Maw MA, Kennedy B, Knight A, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997,
17(2): 198-200. DOI: 10.1038/ng1097-198.Maw MA, Kennedy B, Knight A, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997,
17(2): 198-200. DOI: 10.1038/ng1097-198.
47、Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000, 25(4): 462-466. DOI: 10.1038/78182.Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000, 25(4): 462-466. DOI: 10.1038/78182.
48、Kutsyr O, Maestre-Carballa L, Lluesma-Gomez M, etal. Retinitis pigmentosa is associated with shifts in the gut microbiome. Sci Rep. 2021, 11: 6692. DOI: 10.1038/s41598-021-86052-1.Kutsyr O, Maestre-Carballa L, Lluesma-Gomez M, etal. Retinitis pigmentosa is associated with shifts in the gut microbiome. Sci Rep. 2021, 11: 6692. DOI: 10.1038/s41598-021-86052-1.
49、Ehrenberg M, Pierce EA, Cox GF, et al. CRB1: one gene, many phenotypes. Semin Ophthalmol. 2013, 28(5-6): 397-405. DOI: 10.3109/08820538.2013.825277.Ehrenberg M, Pierce EA, Cox GF, et al. CRB1: one gene, many phenotypes. Semin Ophthalmol. 2013, 28(5-6): 397-405. DOI: 10.3109/08820538.2013.825277.
50、Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci. 2009, 122(Pt 15): 2587-2596. DOI: 10.1242/jcs.023648.Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci. 2009, 122(Pt 15): 2587-2596. DOI: 10.1242/jcs.023648.
51、Guymer RH, Campbell TG. Age-related macular degeneration. Lancet. 2023, 401(10386): 1459-1472. DOI: 10.1016/s0140-6736(22)02609-5.Guymer RH, Campbell TG. Age-related macular degeneration. Lancet. 2023, 401(10386): 1459-1472. DOI: 10.1016/s0140-6736(22)02609-5.
52、Wong WL, Su X, Li X, et al. Global prevalence of agerelated macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.
Lancet Glob Health. 2014, 2(2): e106-e116. DOI: 10.1016/S2214-109X(13)70145-1.Wong WL, Su X, Li X, et al. Global prevalence of agerelated macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.
Lancet Glob Health. 2014, 2(2): e106-e116. DOI: 10.1016/S2214-109X(13)70145-1.
53、Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012, 379(9827): 1728-1738. DOI: 10.1016/s0140-6736(12)60282-7.Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012, 379(9827): 1728-1738. DOI: 10.1016/s0140-6736(12)60282-7.
54、Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2021, 9(1): 62-79. DOI: 10.1016/j.gendis.2021.02.009.Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2021, 9(1): 62-79. DOI: 10.1016/j.gendis.2021.02.009.
55、Liu K, Zou J, Yuan R, et al. Exploring the effect of the gut microbiome on the risk of age-related macular degeneration from the perspective of causality. Invest Ophthalmol Vis Sci. 2023, 64(7): 22. DOI: 10.1167/iovs.64.7.22.Liu K, Zou J, Yuan R, et al. Exploring the effect of the gut microbiome on the risk of age-related macular degeneration from the perspective of causality. Invest Ophthalmol Vis Sci. 2023, 64(7): 22. DOI: 10.1167/iovs.64.7.22.
56、Fritsche LG, Igl W, Cooke Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common
variants. Nat Genet. 2016, 48(2): 134-143. DOI: 10.1038/ng.3448.Fritsche LG, Igl W, Cooke Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common
variants. Nat Genet. 2016, 48(2): 134-143. DOI: 10.1038/ng.3448.
57、Winkler TW, Grassmann F, Brandl C, et al. Genomewide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med Genomics. 2020, 13(1): 120. DOI: 10.1186/s12920-020-00760-7.Winkler TW, Grassmann F, Brandl C, et al. Genomewide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med Genomics. 2020, 13(1): 120. DOI: 10.1186/s12920-020-00760-7.
58、Han X, Gharahkhani P, Mitchell P, et al. Genome-wide
meta-analysis identifies novel loci associated with agerelated macular degeneration. J Hum Genet. 2020, 65(8): 657-665. DOI: 10.1038/s10038-020-0750-x.Han X, Gharahkhani P, Mitchell P, et al. Genome-wide
meta-analysis identifies novel loci associated with agerelated macular degeneration. J Hum Genet. 2020, 65(8): 657-665. DOI: 10.1038/s10038-020-0750-x.
59、Khurana RN, Hill L, Ghanekar A, et al. Agreement of spectral-domain OCT with fluorescein leakage in neovascular age-related macular degeneration. Ophthalmol
Retina. 2020, 4(11): 1054-1058. DOI: 10.1016/j.oret.2020.04.016.Khurana RN, Hill L, Ghanekar A, et al. Agreement of spectral-domain OCT with fluorescein leakage in neovascular age-related macular degeneration. Ophthalmol
Retina. 2020, 4(11): 1054-1058. DOI: 10.1016/j.oret.2020.04.016.
60、Fang V, Gomez-Caraballo M, Lad EM. Biomarkers for nonexudative age-related macular degeneration and relevance for clinical trials: a systematic review. MolDiagn Ther. 2021, 25(6): 691-713. DOI: 10.1007/s40291-021-00551-5.Fang V, Gomez-Caraballo M, Lad EM. Biomarkers for nonexudative age-related macular degeneration and relevance for clinical trials: a systematic review. MolDiagn Ther. 2021, 25(6): 691-713. DOI: 10.1007/s40291-021-00551-5.
61、de Oliveira Dias JR, Zhang Q, Garcia JMB, et al. Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography. Ophthalmology. 2018, 125(2): 255-266. DOI: 10.1016/j.ophtha.2017.08.030.de Oliveira Dias JR, Zhang Q, Garcia JMB, et al. Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography. Ophthalmology. 2018, 125(2): 255-266. DOI: 10.1016/j.ophtha.2017.08.030.
62、Narita C, Wu Z, Rosenfeld PJ, et al. Structural OCT signs suggestive of subclinical nonexudative macular neovascularization in eyes with large drusen.
Ophthalmology. 2020, 127(5): 637-647. DOI: 10.1016/j.ophtha.2019.11.007.Narita C, Wu Z, Rosenfeld PJ, et al. Structural OCT signs suggestive of subclinical nonexudative macular neovascularization in eyes with large drusen.
Ophthalmology. 2020, 127(5): 637-647. DOI: 10.1016/j.ophtha.2019.11.007.
63、Karasu%20B%2C%20Erdo%C4%9Fan%20G.%20Autologous%20translocation%20of%20the%20%0Achoroid%20and%20retina%20pigment%20epitelial%20cells(RPE)%20in%20age%02related%20macular%20degeneration%3A%20monitoring%20the%20viability%20of%20choroid%20and%20RPE%20patch%20with%20indocyanine%20green%20%0Aangiography(ICGA)%20and%20fundus%20autofluorescence(FAF).%20Photodiagnosis%20Photodyn%20Ther.%202019%2C%2028%3A%20318-323.%20DOI%3A%2010.1016%2Fj.pdpdt.2019.08.015.Karasu%20B%2C%20Erdo%C4%9Fan%20G.%20Autologous%20translocation%20of%20the%20%0Achoroid%20and%20retina%20pigment%20epitelial%20cells(RPE)%20in%20age%02related%20macular%20degeneration%3A%20monitoring%20the%20viability%20of%20choroid%20and%20RPE%20patch%20with%20indocyanine%20green%20%0Aangiography(ICGA)%20and%20fundus%20autofluorescence(FAF).%20Photodiagnosis%20Photodyn%20Ther.%202019%2C%2028%3A%20318-323.%20DOI%3A%2010.1016%2Fj.pdpdt.2019.08.015.
64、Li Y, Cai Y, Huang Q, et al. Altered fecal microbiome and metabolome in a mouse model of choroidal neovascularization. Front Microbiol. 2021, 12: 738796. DOI: 10.3389/fmicb.2021.738796.Li Y, Cai Y, Huang Q, et al. Altered fecal microbiome and metabolome in a mouse model of choroidal neovascularization. Front Microbiol. 2021, 12: 738796. DOI: 10.3389/fmicb.2021.738796.
65、Rowan S, Taylor A. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration. Gut Microbes. 2018, 9(5): 452-457. DOI:
10.1080/19490976.2018.1435247.Rowan S, Taylor A. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration. Gut Microbes. 2018, 9(5): 452-457. DOI:
10.1080/19490976.2018.1435247.
66、Andriessen EM, Wilson AM, Mawambo G, et al. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO
Mol Med. 2016, 8(12): 1366-1379. DOI: 10.15252/emmm.201606531.Andriessen EM, Wilson AM, Mawambo G, et al. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO
Mol Med. 2016, 8(12): 1366-1379. DOI: 10.15252/emmm.201606531.
67、Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017, 7: 40826. DOI: 10.1038/srep40826.Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017, 7: 40826. DOI: 10.1038/srep40826.
68、Lin P. The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol. 2018, 29(3): 261-266. DOI: 10.1097/ICU.0000000000000465.Lin P. The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol. 2018, 29(3): 261-266. DOI: 10.1097/ICU.0000000000000465.
69、Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009, 58(8): 1091-1103. DOI: 10.1136/gut.2008.165886.Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009, 58(8): 1091-1103. DOI: 10.1136/gut.2008.165886.
70、Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010, 5(5): e10667. DOI:
10.1371/journal.pone.0010667.Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010, 5(5): e10667. DOI:
10.1371/journal.pone.0010667.
71、Zhang JY, Xie B, Barba H, et al. Absence of gut microbiota is associated with RPE/choroid transcriptomic changes related to age-related macular degeneration pathobiology
and decreased choroidal neovascularization. Int J Mol Sci. 2022, 23(17): 9676. DOI: 10.3390/ijms23179676.Zhang JY, Xie B, Barba H, et al. Absence of gut microbiota is associated with RPE/choroid transcriptomic changes related to age-related macular degeneration pathobiology
and decreased choroidal neovascularization. Int J Mol Sci. 2022, 23(17): 9676. DOI: 10.3390/ijms23179676.
72、Deng Y, Ge X, Li Y, et al. Identification of an intraocular microbiota. Cell Discov. 2021, 7(1): 13. DOI: 10.1038/s41421-021-00245-6.Deng Y, Ge X, Li Y, et al. Identification of an intraocular microbiota. Cell Discov. 2021, 7(1): 13. DOI: 10.1038/s41421-021-00245-6.
73、Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 2017, 8(1): e2537.
DOI: 10.1038/cddis.2016.453.Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 2017, 8(1): e2537.
DOI: 10.1038/cddis.2016.453.
74、Gehrs KM, Anderson DH, Johnson LV, et al. Agerelated macular degeneration: emerging pathogenetic and therapeutic concepts. Ann Med. 2006, 38(7): 450-471.
DOI: 10.1080/07853890600946724.Gehrs KM, Anderson DH, Johnson LV, et al. Agerelated macular degeneration: emerging pathogenetic and therapeutic concepts. Ann Med. 2006, 38(7): 450-471.
DOI: 10.1080/07853890600946724.
75、Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye. 2001, 15(Pt 3): 384-389. DOI: 10.1038/eye.2001.141.Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye. 2001, 15(Pt 3): 384-389. DOI: 10.1038/eye.2001.141.
76、Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024, 9(1):37.
DOI: 10.1038/s41392-024-01743-1.Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024, 9(1):37.
DOI: 10.1038/s41392-024-01743-1.