1、Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021,105(3):493-510. DOI: 10.1016/j.mcna.2021.01.004.Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021,105(3):493-510. DOI: 10.1016/j.mcna.2021.01.004.
2、Wu Z, Medeiros FA. Recent developments in visual field testing for glaucoma. Curr Opin Ophthalmol. 2018, 29(2): 141-146. DOI: 10.1097/ICU.0000000000000461.Wu Z, Medeiros FA. Recent developments in visual field testing for glaucoma. Curr Opin Ophthalmol. 2018, 29(2): 141-146. DOI: 10.1097/ICU.0000000000000461.
3、De Moraes CG, Hood DC, Thenappan A, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma.
Ophthalmology. 2017, 124(10): 1449-1456. DOI: 10.1016/j.ophtha.2017.04.021.De Moraes CG, Hood DC, Thenappan A, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma.
Ophthalmology. 2017, 124(10): 1449-1456. DOI: 10.1016/j.ophtha.2017.04.021.
4、Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013, 32: 1-21. DOI: 10.1016/j.preteyeres.2012.08.003.Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013, 32: 1-21. DOI: 10.1016/j.preteyeres.2012.08.003.
5、Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014, 132(3): 291-
297. DOI: 10.1001/jamaophthalmol.2013.7656.Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014, 132(3): 291-
297. DOI: 10.1001/jamaophthalmol.2013.7656.
6、de Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015, 1: 5. DOI: 10.1186/s40942-015-
0005-8.de Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015, 1: 5. DOI: 10.1186/s40942-015-
0005-8.
7、Rao HL, Pradhan ZS, Suh MH, et al. Optical coherence tomography angiography in glaucoma. J Glaucoma. 2020, 29(4): 312-321. DOI: 10.1097/IJG.0000000000001463.Rao HL, Pradhan ZS, Suh MH, et al. Optical coherence tomography angiography in glaucoma. J Glaucoma. 2020, 29(4): 312-321. DOI: 10.1097/IJG.0000000000001463.
8、Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature in macular and peripapillary regions in early primary open-angle glaucoma. Curr Eye Res. 2020,
45(5): 629-635. DOI: 10.1080/02713683.2019.1676912.Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature in macular and peripapillary regions in early primary open-angle glaucoma. Curr Eye Res. 2020,
45(5): 629-635. DOI: 10.1080/02713683.2019.1676912.
9、Lee EJ, Lee KM, Lee SH, et al. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016, 57(14): 6265-6270. DOI:
10.1167/iovs.16-20287.Lee EJ, Lee KM, Lee SH, et al. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016, 57(14): 6265-6270. DOI:
10.1167/iovs.16-20287.
10、Van Melkebeke L, Barbosa-Breda J, Huygens M, et al. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018, 60(3): 139-151. DOI:
10.1159/000488495.Van Melkebeke L, Barbosa-Breda J, Huygens M, et al. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018, 60(3): 139-151. DOI:
10.1159/000488495.
11、Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual
field loss. Ophthalmology. 2018, 125(4): 578-587. DOI: 10.1016/j.ophtha.2017.10.029.Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual
field loss. Ophthalmology. 2018, 125(4): 578-587. DOI: 10.1016/j.ophtha.2017.10.029.
12、Pradhan ZS, Dixit S, Sreenivasaiah S, et al. A sectoral analysis of vessel density measurements in perimetrically intact regions of glaucomatous eyes: an optical coherence tomography angiography study. J Glaucoma. 2018, 27(6): 525-531. DOI: 10.1097/IJG.0000000000000950.Pradhan ZS, Dixit S, Sreenivasaiah S, et al. A sectoral analysis of vessel density measurements in perimetrically intact regions of glaucomatous eyes: an optical coherence tomography angiography study. J Glaucoma. 2018, 27(6): 525-531. DOI: 10.1097/IJG.0000000000000950.
13、Monsalve B, Ferreras A, Khawaja AP, et al. The relationship between structure and function as measured by OCT and Octopus perimetry. Br J
Ophthalmol. 2015, 99(9): 1230-1235. DOI: 10.1136/bjophthalmol-2014-305888.Monsalve B, Ferreras A, Khawaja AP, et al. The relationship between structure and function as measured by OCT and Octopus perimetry. Br J
Ophthalmol. 2015, 99(9): 1230-1235. DOI: 10.1136/bjophthalmol-2014-305888.
14、Jung KI, Ryu HK, Hong KH, et al. Simultaneously performed combined 24-2 and 10-2 visual field tests in glaucoma. Sci Rep. 2021, 11(1): 1227. DOI: 10.1038/s41598-020-80318-w.Jung KI, Ryu HK, Hong KH, et al. Simultaneously performed combined 24-2 and 10-2 visual field tests in glaucoma. Sci Rep. 2021, 11(1): 1227. DOI: 10.1038/s41598-020-80318-w.
15、Christopher M, Bowd C, Proudfoot JA, et al. Deep learning estimation of 10-2 and 24-2 visual field metrics based on thickness maps from macula OCT. Ophthalmology. 2021,
128(11): 1534-1548. DOI: 10.1016/j.ophtha.2021.04.022.Christopher M, Bowd C, Proudfoot JA, et al. Deep learning estimation of 10-2 and 24-2 visual field metrics based on thickness maps from macula OCT. Ophthalmology. 2021,
128(11): 1534-1548. DOI: 10.1016/j.ophtha.2021.04.022.
16、Tao A, Liang Y, Chen J, et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma.
Microvasc Res. 2020, 130: 104005. DOI: 10.1016/j.mvr.2020.104005.Tao A, Liang Y, Chen J, et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma.
Microvasc Res. 2020, 130: 104005. DOI: 10.1016/j.mvr.2020.104005.
17、Kanamori A, Naka M, Nagai-Kusuhara A, et al. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous
eyes. Arch Ophthalmol. 2008, 126(11): 1500-1506. DOI: 10.1001/archopht.126.11.1500.Kanamori A, Naka M, Nagai-Kusuhara A, et al. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous
eyes. Arch Ophthalmol. 2008, 126(11): 1500-1506. DOI: 10.1001/archopht.126.11.1500.
18、Cirafici P, Maiello G, Ancona C, et al. Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma. Eye. 2021, 35(3): 868-876.
DOI: 10.1038/s41433-020-0989-7.Cirafici P, Maiello G, Ancona C, et al. Point-wise correlations between 10-2 Humphrey visual field and OCT data in open angle glaucoma. Eye. 2021, 35(3): 868-876.
DOI: 10.1038/s41433-020-0989-7.
19、Jung JJ, Soh YQ, Sha P, et al. Effects of induced astigmatism on spectral domain-OCT angiography quantitative metrics. Am J Ophthalmol. 2020, 219: 49-58.
DOI: 10.1016/j.ajo.2020.07.005.Jung JJ, Soh YQ, Sha P, et al. Effects of induced astigmatism on spectral domain-OCT angiography quantitative metrics. Am J Ophthalmol. 2020, 219: 49-58.
DOI: 10.1016/j.ajo.2020.07.005.
20、Huang S, Zhang S, Wang J, et al. Correlation between serum cystatin C level and retinal blood flow in patients with essential hypertension. Ophthalmic Res, 2022, 65(3):
335-341. DOI: 10.1159/000522219.Huang S, Zhang S, Wang J, et al. Correlation between serum cystatin C level and retinal blood flow in patients with essential hypertension. Ophthalmic Res, 2022, 65(3):
335-341. DOI: 10.1159/000522219.
21、Park KS, Lim HB, Shin YI, et al. Effect of axial length on peripapillary microvasculature: an optical coherence tomography angiography study. PLoS One. 2021, 16(10):
e0258479. DOI: 10.1371/journal.pone.0258479.Park KS, Lim HB, Shin YI, et al. Effect of axial length on peripapillary microvasculature: an optical coherence tomography angiography study. PLoS One. 2021, 16(10):
e0258479. DOI: 10.1371/journal.pone.0258479.
22、Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study. Invest Ophthalmol Vis Sci. 2021, 62(1): 30. DOI: 10.1167/iovs.62.1.30.Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study. Invest Ophthalmol Vis Sci. 2021, 62(1): 30. DOI: 10.1167/iovs.62.1.30.
23、Lin F, Qiu Z, Li F, et al. Macular and submacular choroidal microvasculature in patients with primary o p e n - a n g l e g l a u c o m a a n d h i g h m y o p i a . B r J Ophthalmol. 2023, 107(5): 650-656. DOI: 10.1136/bjophthalmol-2021-319557.Lin F, Qiu Z, Li F, et al. Macular and submacular choroidal microvasculature in patients with primary o p e n - a n g l e g l a u c o m a a n d h i g h m y o p i a . B r J Ophthalmol. 2023, 107(5): 650-656. DOI: 10.1136/bjophthalmol-2021-319557.
24、Lin YH, Huang SM, Yeung L, et al. Correlation of visual field with peripapillary vessel density through optical coherence tomography angiography in normal-tension
glaucoma. Transl Vis Sci Technol. 2020, 9(13): 26. DOI: 10.1167/tvst.9.13.26.Lin YH, Huang SM, Yeung L, et al. Correlation of visual field with peripapillary vessel density through optical coherence tomography angiography in normal-tension
glaucoma. Transl Vis Sci Technol. 2020, 9(13): 26. DOI: 10.1167/tvst.9.13.26.
25、Shin JW, Kwon J, Lee J, et al. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol. 2018: bjophthalmol-bjophtha2018-312085. DOI: 10.1136/bjophthalmol-2018-312085.Shin JW, Kwon J, Lee J, et al. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol. 2018: bjophthalmol-bjophtha2018-312085. DOI: 10.1136/bjophthalmol-2018-312085.
26、Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages. Br J Ophthalmol. 2019, 103(12):
1827-1833. DOI: 10.1136/bjophthalmol-2018-313019.Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages. Br J Ophthalmol. 2019, 103(12):
1827-1833. DOI: 10.1136/bjophthalmol-2018-313019.
27、Lu P, Xiao H, Chen H, et al. Asymmetry of macular vessel density in bilateral early open-angle glaucoma with unilateral central 10-2 visual field loss. J Glaucoma. 2020,
29(10): 926-931. DOI: 10.1097/IJG.0000000000001578.Lu P, Xiao H, Chen H, et al. Asymmetry of macular vessel density in bilateral early open-angle glaucoma with unilateral central 10-2 visual field loss. J Glaucoma. 2020,
29(10): 926-931. DOI: 10.1097/IJG.0000000000001578.