1、Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5.Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[ J]. Lancet Glob Health, 2017, 5(12): e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5.
2、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
3、McMonnies CW. Glaucoma history and risk factors[ J]. J Optom, 2017,10(2): 71-78. DOI: 10.1016/j.optom.2016.02.003.McMonnies CW. Glaucoma history and risk factors[ J]. J Optom, 2017,10(2): 71-78. DOI: 10.1016/j.optom.2016.02.003.
4、Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review[ J]. Open Ophthalmol J, 2010, 4: 52-59. DOI: 10.2174/ 1874364101004010052.Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review[ J]. Open Ophthalmol J, 2010, 4: 52-59. DOI: 10.2174/ 1874364101004010052.
5、Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[ J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003.Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma[ J]. Prog Retin Eye Res, 2005, 24(5): 612-637. DOI: 10.1016/j.preteyeres.2004.10.003.
6、Jonas JB, Aung T, Bourne RR , et al. Glaucoma[ J]. Lancet, 2017, 390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.Jonas JB, Aung T, Bourne RR , et al. Glaucoma[ J]. Lancet, 2017, 390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.
7、Lusthaus J, Goldberg I. Current management of glaucoma[ J]. Med J Aust, 2019, 210(4): 180-187. DOI: 10.5694/mja2.50020.Lusthaus J, Goldberg I. Current management of glaucoma[ J]. Med J Aust, 2019, 210(4): 180-187. DOI: 10.5694/mja2.50020.
8、Liebmann%20JM%2C%20Cioffi%20GA.%20Nicking%20glaucoma%20with%20nicotinamide%3F%5B%20J%5D.%20N%20Engl%20J%20Med%2C%202017%2C%20376(21)%3A%202079-2081.%20DOI%3A%2010.1056%2FNEJMcibr1702486.Liebmann%20JM%2C%20Cioffi%20GA.%20Nicking%20glaucoma%20with%20nicotinamide%3F%5B%20J%5D.%20N%20Engl%20J%20Med%2C%202017%2C%20376(21)%3A%202079-2081.%20DOI%3A%2010.1056%2FNEJMcibr1702486.
9、Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage[ J]. Life Sci Alliance, 2023, 6(8): e202301976. DOI: 10.26508/lsa.202301976.Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage[ J]. Life Sci Alliance, 2023, 6(8): e202301976. DOI: 10.26508/lsa.202301976.
10、Soucy JR , Kriukov E, Oswald J, et al. Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell sur vival in mice[ J]. bioRxiv, 2024: 2024.03.07.583961. DOI: 10.1101/2024.03.07.583961.Soucy JR , Kriukov E, Oswald J, et al. Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell sur vival in mice[ J]. bioRxiv, 2024: 2024.03.07.583961. DOI: 10.1101/2024.03.07.583961.
11、Ciociola EC, Fernandez E, Kaufmann M, et al. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies[ J]. Curr Opin Ophthalmol, 2024, 35(2): 89-96. DOI: 10.1097/ICU.0000000000001016.Ciociola EC, Fernandez E, Kaufmann M, et al. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies[ J]. Curr Opin Ophthalmol, 2024, 35(2): 89-96. DOI: 10.1097/ICU.0000000000001016.
12、Kanamori A, Naka M, Fukuda M, et al. Tafluprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(10): 1353-1360. DOI: 10.1007/s00417-009-1122-6.Kanamori A, Naka M, Fukuda M, et al. Tafluprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(10): 1353-1360. DOI: 10.1007/s00417-009-1122-6.
13、Yamagishi R , Aihara M, Araie M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction[ J]. Exp Eye Res, 2011, 93(3): 265-270. DOI: 10.1016/j.exer.2011.06.022.Yamagishi R , Aihara M, Araie M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction[ J]. Exp Eye Res, 2011, 93(3): 265-270. DOI: 10.1016/j.exer.2011.06.022.
14、Sato K, Nakagawa Y, Omodaka K, et al. The sustained release of tafluprost with a drug delivery system prevents the axonal injury-induced loss of retinal ganglion cells in rats[ J]. Curr Eye Res, 2020, 45(9): 1114-1123. DOI: 10.1080/02713683.2020.1715446.Sato K, Nakagawa Y, Omodaka K, et al. The sustained release of tafluprost with a drug delivery system prevents the axonal injury-induced loss of retinal ganglion cells in rats[ J]. Curr Eye Res, 2020, 45(9): 1114-1123. DOI: 10.1080/02713683.2020.1715446.
15、Wu S, Liu C, Tang J, et al. Tafluprost promotes axon regeneration after optic nerve crush via Zn2+-mTOR pathway[ J]. Neuropharmacology, 2024, 242: 109746. DOI: 10.1016/j.neuropharm.2023.109746.Wu S, Liu C, Tang J, et al. Tafluprost promotes axon regeneration after optic nerve crush via Zn2+-mTOR pathway[ J]. Neuropharmacology, 2024, 242: 109746. DOI: 10.1016/j.neuropharm.2023.109746.
16、Zhang X, Zhou X, Zhao Y, et al. Effects of tafluprost on ocular blood flow[ J]. Ophthalmol Ther, 2022, 11(6): 1991-2003. DOI: 10.1007/s40123-022-00566-z.Zhang X, Zhou X, Zhao Y, et al. Effects of tafluprost on ocular blood flow[ J]. Ophthalmol Ther, 2022, 11(6): 1991-2003. DOI: 10.1007/s40123-022-00566-z.
17、Kanamori A, Naka M, Fukuda M, et al. Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Exp Eye Res, 2009, 88(3): 535-541. DOI: 10.1016/j.exer.2008.11.012.Kanamori A, Naka M, Fukuda M, et al. Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo[ J]. Exp Eye Res, 2009, 88(3): 535-541. DOI: 10.1016/j.exer.2008.11.012.
18、Yamamoto K, Sato K, Yukita M, et al. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection[ J]. J Neurochem, 2017, 140(3): 495-508. DOI: 10.1111/jnc.13902.Yamamoto K, Sato K, Yukita M, et al. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection[ J]. J Neurochem, 2017, 140(3): 495-508. DOI: 10.1111/jnc.13902.
19、Cazevieille C, Muller A, Meynier F, et al. Protection by prostaglandins from glutamate toxicity in cortical neurons[ J]. Neurochem Int, 1994,24(4): 395-398. DOI: 10.1016/0197-0186(94)90118-x.Cazevieille C, Muller A, Meynier F, et al. Protection by prostaglandins from glutamate toxicity in cortical neurons[ J]. Neurochem Int, 1994,24(4): 395-398. DOI: 10.1016/0197-0186(94)90118-x.
20、Nakanishi Y, Nakamura M, Mukuno H, et al. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase[ J]. Exp Eye Res, 2006, 83(5): 1108-1117. DOI: 10.1016/j.exer.2006.05.018.Nakanishi Y, Nakamura M, Mukuno H, et al. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase[ J]. Exp Eye Res, 2006, 83(5): 1108-1117. DOI: 10.1016/j.exer.2006.05.018.
21、Sano A, Maehara T, Fujimori K. Protection of 6-OHDA neurotoxicity by PGF2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells[ J]. Toxicology, 2021, 450: 152686. DOI: 10.1016/j.tox.2021.152686.Sano A, Maehara T, Fujimori K. Protection of 6-OHDA neurotoxicity by PGF2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells[ J]. Toxicology, 2021, 450: 152686. DOI: 10.1016/j.tox.2021.152686.
22、Zheng J, Feng X, Hou L, et al. Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway[ J]. Cell Mol Neurobiol, 2011, 31(4): 597-604. DOI: 10.1007/s10571-011-9653-x.Zheng J, Feng X, Hou L, et al. Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway[ J]. Cell Mol Neurobiol, 2011, 31(4): 597-604. DOI: 10.1007/s10571-011-9653-x.
23、Nagata A , Omachi K , Higashide T, et al. OCT evaluation of neuroprotective effects of tafluprost on retinal injury after intravitreal injection of endothelin-1 in the rat eye[ J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 1040-1047. DOI: 10.1167/iovs.13-13056.Nagata A , Omachi K , Higashide T, et al. OCT evaluation of neuroprotective effects of tafluprost on retinal injury after intravitreal injection of endothelin-1 in the rat eye[ J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 1040-1047. DOI: 10.1167/iovs.13-13056.
24、Takagi Y, Nakajima T, Shimazaki A , et al. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug[ J]. Exp Eye Res, 2004, 78(4): 767-776. DOI: 10.1016/j.exer.2003.12.007.Takagi Y, Nakajima T, Shimazaki A , et al. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug[ J]. Exp Eye Res, 2004, 78(4): 767-776. DOI: 10.1016/j.exer.2003.12.007.
25、Mukhopadhyay P, Bian L, Yin H, et al. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization[ J]. Invest Ophthalmol Vis Sci, 2001, 42(2): 424-428.Mukhopadhyay P, Bian L, Yin H, et al. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization[ J]. Invest Ophthalmol Vis Sci, 2001, 42(2): 424-428.
26、Ocklind A, Lake S, Wentzel P, et al. Localization of the prostaglandin F2 alpha receptor messenger RNA and protein in the cynomolgus monkey eye[ J]. Invest Ophthalmol Vis Sci, 1996, 37(5): 716-726.Ocklind A, Lake S, Wentzel P, et al. Localization of the prostaglandin F2 alpha receptor messenger RNA and protein in the cynomolgus monkey eye[ J]. Invest Ophthalmol Vis Sci, 1996, 37(5): 716-726.
27、Ocklind A, Lake S, Krook K, et al. Localization of the prostaglandin F2 alpha receptor in rat tissues[ J]. Prostaglandins Leukot Essent Fatty Acids, 1997, 57(6): 527-532. DOI: 10.1016/s0952-3278(97)90555-x.Ocklind A, Lake S, Krook K, et al. Localization of the prostaglandin F2 alpha receptor in rat tissues[ J]. Prostaglandins Leukot Essent Fatty Acids, 1997, 57(6): 527-532. DOI: 10.1016/s0952-3278(97)90555-x.
28、Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[ J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[ J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.
29、Bilak M, Wu L, Wang Q, et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis[ J]. Ann Neurol, 2004, 56(2): 240-248. DOI: 10.1002/ana.20179.Bilak M, Wu L, Wang Q, et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis[ J]. Ann Neurol, 2004, 56(2): 240-248. DOI: 10.1002/ana.20179.
30、Echeverria V, Clerman A, Doré S. Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure[ J]. Eur J Neurosci, 2005, 22(9): 2199-2206. DOI: 10.1111/j.1460-9568.2005.04427.x.Echeverria V, Clerman A, Doré S. Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure[ J]. Eur J Neurosci, 2005, 22(9): 2199-2206. DOI: 10.1111/j.1460-9568.2005.04427.x.
31、Sharif NA, Odani-Kawabata N, Lu F, et al. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma[ J]. Exp Eye Res, 2023, 229: 109415. DOI: 10.1016/j.exer.2023.109415.Sharif NA, Odani-Kawabata N, Lu F, et al. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma[ J]. Exp Eye Res, 2023, 229: 109415. DOI: 10.1016/j.exer.2023.109415.
32、Gao B, Huber RD, Wenzel A, et al. Localization of organic anion transporting polypeptides in the rat and human ciliar y body epithelium[ J]. Exp Eye Res, 2005, 80(1): 61-72. DOI: 10.1016/j.exer.2004.08.013.Gao B, Huber RD, Wenzel A, et al. Localization of organic anion transporting polypeptides in the rat and human ciliar y body epithelium[ J]. Exp Eye Res, 2005, 80(1): 61-72. DOI: 10.1016/j.exer.2004.08.013.
33、Kraft ME, Glaeser H, Mandery K, et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost[ J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2504-2511. DOI: 10.1167/iovs.09-4290.Kraft ME, Glaeser H, Mandery K, et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost[ J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2504-2511. DOI: 10.1167/iovs.09-4290.
34、Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control[ J]. Nat Rev Mol Cell Biol, 2009, 10(5): 307-318. DOI: 10.1038/nrm2672.Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control[ J]. Nat Rev Mol Cell Biol, 2009, 10(5): 307-318. DOI: 10.1038/nrm2672.
35、Morgan-Warren%20PJ%2C%20Berry%20M%2C%20Ahmed%20Z%2C%20et%20al.%20Exploiting%20mTOR%20signaling%3A%20a%20novel%20translatable%20treatment%20strategy%20for%20traumatic%20optic%20neuropathy%3F%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202013%2C%2054(10)%3A%206903-6916.%20DOI%3A%2010.1167%2Fiovs.13-12803.Morgan-Warren%20PJ%2C%20Berry%20M%2C%20Ahmed%20Z%2C%20et%20al.%20Exploiting%20mTOR%20signaling%3A%20a%20novel%20translatable%20treatment%20strategy%20for%20traumatic%20optic%20neuropathy%3F%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202013%2C%2054(10)%3A%206903-6916.%20DOI%3A%2010.1167%2Fiovs.13-12803.
36、Sun AW, Wu MH, Vijayalingam M, et al. The role of zinc in modulating acid-sensing ion channel function[ J]. Biomolecules, 2023, 13(2): 229. DOI: 10.3390/biom13020229.Sun AW, Wu MH, Vijayalingam M, et al. The role of zinc in modulating acid-sensing ion channel function[ J]. Biomolecules, 2023, 13(2): 229. DOI: 10.3390/biom13020229.
37、Wang B, Fang T, Chen H. Zinc and central nervous system disorders[ J]. Nutrients, 2023, 15(9): 2140. DOI: 10.3390/nu15092140.Wang B, Fang T, Chen H. Zinc and central nervous system disorders[ J]. Nutrients, 2023, 15(9): 2140. DOI: 10.3390/nu15092140.
38、Park MK, Choi BY, Kho AR, et al. The protective role of glutathione on zinc-induced neuron death after brain injuries[ J]. Int J Mol Sci, 2023, 24(3): 2950. DOI: 10.3390/ijms24032950.Park MK, Choi BY, Kho AR, et al. The protective role of glutathione on zinc-induced neuron death after brain injuries[ J]. Int J Mol Sci, 2023, 24(3): 2950. DOI: 10.3390/ijms24032950.
39、Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons[ J]. Antioxid Redox Signal, 2011, 15(8): 2249-2263. DOI: 10.1089/ars.2010.3607.Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons[ J]. Antioxid Redox Signal, 2011, 15(8): 2249-2263. DOI: 10.1089/ars.2010.3607.
40、Koh JY, Suh SW, Gwag BJ, et al. The role of zinc in selective neuronal death after transient global cerebral ischemia[ J]. Science, 1996, 272(5264): 1013-1016. DOI: 10.1126/science.272.5264.1013.Koh JY, Suh SW, Gwag BJ, et al. The role of zinc in selective neuronal death after transient global cerebral ischemia[ J]. Science, 1996, 272(5264): 1013-1016. DOI: 10.1126/science.272.5264.1013.
41、Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons[ J]. Nat Neurosci, 2010, 13(9): 1075-1081. DOI: 10.1038/nn.2603.Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons[ J]. Nat Neurosci, 2010, 13(9): 1075-1081. DOI: 10.1038/nn.2603.
42、Szewczyk%20B%2C%20Pochwat%20B%2C%20Rafa%C5%82o%20A%2C%20et%20al.%20Activation%20of%20mTOR%20dependent%20signaling%20pathway%20is%20a%20necessary%20mechanism%20of%20antidepressant-like%20activity%20of%20zinc%5B%20J%5D.%20Neuropharmacology%2C%202015%2C%2099%3A%20517-526.%20DOI%3A%2010.1016%2Fj.neuropharm.2015.08.026.Szewczyk%20B%2C%20Pochwat%20B%2C%20Rafa%C5%82o%20A%2C%20et%20al.%20Activation%20of%20mTOR%20dependent%20signaling%20pathway%20is%20a%20necessary%20mechanism%20of%20antidepressant-like%20activity%20of%20zinc%5B%20J%5D.%20Neuropharmacology%2C%202015%2C%2099%3A%20517-526.%20DOI%3A%2010.1016%2Fj.neuropharm.2015.08.026.
43、Fang L, Roth M, S'Ng CT, et al. Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21(Waf1/Cip1)[ J]. J Nutr Biochem, 2021, 89: 108563. DOI: 10.1016/j.jnutbio.2020.108563.Fang L, Roth M, S'Ng CT, et al. Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21(Waf1/Cip1)[ J]. J Nutr Biochem, 2021, 89: 108563. DOI: 10.1016/j.jnutbio.2020.108563.
44、Guo M, Wang Y, Zhao H, et al. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway[ J]. Aquat Toxicol, 2021, 240: 105986. DOI: 10.1016/j.aquatox.2021.105986.Guo M, Wang Y, Zhao H, et al. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway[ J]. Aquat Toxicol, 2021, 240: 105986. DOI: 10.1016/j.aquatox.2021.105986.
45、Huang X, Huang D, Zhu T, et al. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli[ J]. J Nanobiotechnology, 2021, 19(1): 207. DOI: 10.1186/s12951-021-
00956-8.Huang X, Huang D, Zhu T, et al. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli[ J]. J Nanobiotechnology, 2021, 19(1): 207. DOI: 10.1186/s12951-021-
00956-8.
46、Zhao H, Wang Y, Liu J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation[ J]. Environ Pollut, 2019, 253: 741-748. DOI: 10.1016/j.envpol.2019.07.065.Zhao H, Wang Y, Liu J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation[ J]. Environ Pollut, 2019, 253: 741-748. DOI: 10.1016/j.envpol.2019.07.065.