Review Article

Pathologic myopia

:-
 

Abstract: Pathologic myopia is the major cause of the loss of the best-corrected visual acuity (BCVA) worldwide, especially in East Asian countries. The loss of BCVA is caused by the development of myopic macula patchy, myopic traction macula patchy, and myopic optic neuropathy (or glaucoma). The development of such vision-threatening complications is caused by eye deformity, characterized by a formation of posterior staphyloma. The recent advance in ocular imaging has greatly facilitated the clarification of pathologies and pathogenesis of pathological myopia and myopia-related complications. These technologies include ultra-wide field fundus imaging, swept-source optical coherence tomography, and 3D MRI. In addition, the new treatments such as anti-VEGF therapies for myopic choroid all neovascularization have improved the outcome of the patients. Swept-source OCT showed that some of the lesions of myopic maculopathy were not simply chorioretinal atrophy but were Bruch’s membrane holes. Features of myopic traction maculopathy have been analyzed extensively by using OCT. The understanding the pathophysiology of complications of pathologic myopia is considered useful for better management of this blinding eye disease.

Review Article

The present and the prospect of bioengineering cornea

:-
 

Abstract: Corneal blindness represents one of the world’s three major causes of blindness, and the fundamental problem of corneal transplantation is a severe shortage of donor tissues worldwide, resulting in approximately 1.5 million new cases of blindness annually. To address the growing need for corneal transplants two main approaches are being pursued: allogenic and bioengineering cornea. Bioengineering corneas are constructed by naturally generating an extracellular matrix (ECM) component as the scaffold structure with or without corneal cells. It is well established that the scaffold structure directs the fate of cells, therefore, the fabrication of the correct scaffold structure components could produce an ideal corneal substitute, able to mimic the native corneal function. Another key factor in the construction of tissue engineering cornea is seed cells. However, unlike the epithelium and stroma cells, human cornea endothelium cells (HCECs) are notorious for having a limited proliferative capacity in vivo because of the mitotic block at the G1 phase of the cell cycle due to “contact-inhibition”. This review will focus on the main concepts of recent progress towards the scaffold and seed cells, especially endothelial cells for bioengineering cornea, along with future perspectives.

Review Article

The development of tissue engineering corneal scaffold: which one the history will choose?

:-
 

Abstract: Since the 21st century, the development of corneal tissue engineering technology has been developing rapidly. With the progress of biomaterials, cell culture and tissue engineering technology, tissue engineering cornea has gained great development in both basic scientific research and clinical application. In particular, tissue engineered corneal scaffolds are the core components of tissue engineered corneas. It is the focus of current research on tissue engineering cornea to search for scaffolds with good biocompatibility, high safety and good biomechanical properties. In this paper, the recent research progress of tissue engineering corneal materials is reviewed.

Review Article

Scleral remodelling in myopia and its manipulation: a review of recent advances in scleral strengthening and myopia control

:-
 

Abstract: The biological mechanisms of eye growth and refractive development are increasingly well characterised, a result of many careful studies that have been carried out over many years. As the outer coat of the eye, the sclera has the ultimate impact on the restraint or facilitation of eye growth, thus any changes in its biochemistry, ultrastructure, gross morphology and/or biomechanical properties are critical in refractive error development and, in particular, the development of myopia. The current review briefly revisits our basic understanding of the structure and biomechanics of the sclera and how these are regulated and modified during eye growth and myopia development. The review then applies this knowledge in considering recent advances in our understanding of how the mechanisms of scleral remodelling may be manipulated or controlled, in order to constrain eye growth and limit the development of myopia, in particular the higher degrees of myopia that lead to vision loss and blindness. In doing so, the review specifically considers recent approaches to the strengthening of the sclera, through collagen cross-linking, scleral transplantation, implantation or injection of biomaterials, or the direct therapeutic targeting and manipulation of the biochemical mechanisms known to be involved in myopia development. These latest approaches to the control of scleral changes in myopia are, where possible, placed in the context of our understanding of scleral biology, in order to bring a more complete understanding of current and future therapeutic interventions in myopia, and their consequences.

Review Article

Limbal epithelial stem cells in corneal surface reconstruction

:-
 

Abstract: Cornea serves as the partial front barrier and major light reflection organ of the eye. The integrity of corneal surface is essential for ocular function. Injuries or congenital diseases could significantly destruct the homeostasis of the ocular surface, especially the microenvironment of limbal epithelial stem cells (LESCs), and will eventually cause dysfunction of corneal regeneration and diminish of LESCs. The loss of LESCs by different reasons are named limbal stem cell deficiency (LSCD), which is one of the leading cause of vision loss worldwide. To restore the corneal surface, LESC transplantation in the form of tissue or cell cultures is currently a viable and promising method to treat LSCD. In this review, we aim to introduce the characters and niche of LESCs, and discuss different aspects of its application in cornea surface reconstruction.

Review Article

Age related macular degeneration: from evidence based-care to experimental models

:-
 

Abstract: To describe the current aging population in China and globally, especially as it applies to age-related macular degeneration (AMD). To review the current standards of care for treating both wet (exudative) eAMD and dry (atrophic) aAMD. And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study (AREDS) using eye bank tissue. A literature search that outlines current aging populations, standards of clinical treatment as defined by large, multicenter, randomized clinical trials that present level-I data with a low risk for bias. An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes. Analysis includes proteomic, cellular, and functional genomics. The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth (anti-VEGF) agents alone or in combination with photodynamic therapy. Monotherapy treatment intervals may be monthly, as needed, or by using a treat-and-extend (TAE) protocol. There are no proven therapies for aAMD. AMD that is phenotypically defined at AREDS level 3, should be managed with the use of anti-oxidant vitamins, lutein/zeaxanthin and zinc (AREDS-2 formulation). By understanding the multiple etiologies in the pathogenesis of AMD (i.e., oxidative stress, inflammation, and genetics), the use of human eye bank tissues graded according to the Minnesota Grading System (MGS) will enable future insights into the pathogenesis of AMD. Initial AMD management is with lifestyle modification such as avoiding smoking, eating a healthy diet and using appropriate vitamin supplements (AREDS-2). For eAMD, anti-VEGF therapies using either pro re nata (PRN) or TAE protocols are recommended, with photodynamic therapy in appropriate cases. New cellular information will direct future, potential therapies and these will originate from experimental models, such as the proposed eye bank model using the MGS, that leverages the prospective AREDS database.

Review Article

Developing leadership skills in young ophthalmologists

:-
 

Abstract: In a rapidly changing world, there is an increased need to cultivate ophthalmologists who are not only technically capable but also possess the leadership skills required to be at the forefront of change. Ophthalmologists make daily frontline decisions that determine the quality and efficiency of care based on their leadership qualities. However, they also educate, advocate, perform research, run departments and work in practices—all of which require the practice of effective leadership. Although the need for ophthalmic leadership has been recognised, few training programs offer leadership skills as a component of their core curricula, focussing on clinical knowledge with less emphasis on teaching of non-clinical professional competencies. Clinicians who participate in leadership development are more likely to feel empowered to provide patient-centred care, develop a greater self-awareness and confidence to initiate positive change and promote better team alignment. In turn, the ophthalmic profession collectively benefits from effective leadership as organizations are better run, issues are advocated more globally and challenges are address holistically by ophthalmologists who are not merely technically capable surgeons or researchers, but effective communicators and collaborators. In this paper, we explore the role of leadership in the spheres of healthcare and ophthalmology. We discuss the value of leadership across clinical, educational and organisational levels, with specific emphasis on the current state of development and conclude with a series of recommendations to ensure the continued development of effective ophthalmic leaders into the future.

Original Article

Influencing factors of hospitalization costs for glaucoma patients under clinical pathway management

:-
 

Background: To investigate and analyze the hospitalization costs of inpatients with primary acute angle closure glaucoma (PACG), and to explores the influencing factors of hospitalization cost and to provide reference for specialized hospitals to carry out clinical pathways.

Methods: The first page diagnostic data of PACG patients’ medical records were collected, and an Excel database was established according to the International Classification of Diseases (ICD-10) code. Statistical analysis of hospitalization data was performed using SPSS 17.0 software.

Results: Hospitalization days and clinical pathway which affect the change of the hospitalization cost (P<0.001).

Conclusions: Hospitalization day is an important factor affecting the hospitalization cost, reducing unnecessary hospitalization time can control the increase of hospitalization cost.

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 

Abstract: Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.

Original Article

Association between donor corneal endothelial cell counts and infectious agent reactivity: an eye bank database analysis

:-
 

Background: To evaluate the association between corneal central endothelial cell count (CECC) with reactivity for hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), human T-lymphotropic virus-1 (HTLV1), and syphilis from an eye bank database.

Methods: Eye bank data included 19,159 donors and 38,318 corneas screened for HBV, HCV, HIV, HTLV1, and syphilis from July 2007–May 2015. Linear and binary mixed effects models were used to determine the adjusted marginal effect a positive viral screening test had on CECC and morphology, respectively. The models were adjusted for age, race, gender, lens status, and death to preservation. Eyes with missing data were excluded from the analysis. Statistical significance was defined as P values <0.05.

Results: A total of 18,097 donors and 35,136 corneas were included in the final analysis. Average CECC for eyes with negative viral screening was 2,597±436 while the average CECC for eyes screening positive for syphilis, HBV, HCV, HIV, and HTLV1 were 2,638±392 (P=0.073), 2,569±419 (P=0.815), 2,603±363 (P=0.207), 2,615±360 (P=0.733), and 2,625±436 (P=0.362) respectively.

Conclusions: The presence of HBV, HCV, HIV, HTLV1, and syphilis display no association with a statistically significant difference in CECC when compared to normal non-diseased donors.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息