Review Article

Corneal neurotization: a narrative review of techniques, outcomes, and surgical considerations

:22-33
 
Background and Objective: Corneal neurotization is a novel surgical technique used to restore corneal sensation in patients with neurotrophic keratopathy. Neurotrophic keratopathy is a disorder characterized by dysfunction of the ophthalmic division of the trigeminal nerve, which provides sensory innervation to the cornea. Without sensation, the cornea is at risk of infection, ulceration, perforation, and ultimately, vision loss. Corneal neurotization has emerged as an innovative technique to reinnervate anesthetized corneas by transferring a healthy donor nerve to the affected eye around the corneoscleral limbus. As the field of corneal neurotization rapidly grows, there is a need to synthesize the existing body of literature on corneal neurotization and identify important areas for further research. In this review, we will discuss neurotrophic keratopathy and its current management strategies, followed by an overview of corneal neurotization techniques, outcomes, surgical considerations, and future directions. Methods: PubMed and Google Scholar searches were conducted to retrieve and analyze relevant original papers and reviews on neurotrophic keratopathy and corneal neurotization up until April 2022.Key Content and Findings: Currently, numerous techniques for corneal neurotization exist, including direct nerve transfers, as well as indirect neurotization via interposition nerve grafts. So far, corneal neurotization has been shown to be highly successful in restoring corneal sensation, improving visual acuity,and improving corneal epithelial health. To date, there have been no significant differences in outcomes between direct versus indirect neurotization techniques, different donor nerves, or autologous versus allogeneic interposition grafts. However, there is some evidence that corneal neurotization procedures may be more successful in pediatric patients.Conclusions: Corneal neurotization shows great promise in treating neurotrophic corneas and represents the first management option to date that addresses the underlying pathophysiological mechanism of neurotrophic keratopathy by restoring corneal sensation. As the use of corneal neurotization continues to broaden, additional studies will become important to compare techniques in a systematic manner, with larger sample sizes, as well as standardized outcome measures and follow-up time.
Review Article

Amniotic membrane transplantation: an updated clinical review for the ophthalmologist

:22-56
 
Although amniotic membrane transplantation (AMT) has long been used as an essential surgical technique for ocular surface reconstruction, its role continues to evolve and expand. In the management of numerous ocular surface disorders, ranging from inflammatory to infectious, traumatic to neoplastic, the ability to perform AMT is a valuable addition to the skillset of any ophthalmologist. The purpose of this paper is to provide ophthalmologists with an updated, evidence-based review of the clinical indications for AMT in corneal and conjunctival reconstruction, reviewing its common and even experimental applications known to date. The methods of amniotic membrane preservation, the available commercial amniotic membrane products to date, and future directions for amniotic membrane use, including amniotic membrane extract eye drops (AMEED), are also discussed. It is paramount for ophthalmologists to stay up-to-date on the applications of AMT so as to effectively incorporate this versatile treatment modality into their practice,both in the operating room and in the clinic. By familiarizing the general ophthalmologist with its diverse applications, we hope to motivate general ophthalmologists to incorporate the use of AMT into their clinical practice, or provide guidance on how to recognize when referral to a corneal specialist for amniotic membrane application is prudent.
Editorial
Original Article

Fundus photography, fundus fluorescein angiography, and optical coherence tomography of healthy cynomolgus monkey, New Zealand rabbit, Sprague Dawley rat, and BALB/c mouse retinas

:22-54
 
Background: A variety of experimental animal models are used in basic ophthalmological research to elucidate physiological mechanisms of vision and disease pathogenesis. The choice of animal model is based on the measurability of specific parameters or structures, the applicability of clinical measurement technologies, and the similarity to human eye function. Studies of eye pathology usually compare optical parameters between a healthy and altered state, so accurate baseline assessments are critical, but few reports have comprehensively examined the normal anatomical structures and physiological functions in these models.
Methods: Three cynomolgus monkeys, six New Zealand rabbits, ten Sprague Dawley (SD) rats, and BALB/c mice were examined by fundus photography (FP), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT).
Results: Most retinal structures of cynomolgus monkey were anatomically similar to the corresponding human structures as revealed by FP, FFA, and OCT. New Zealand rabbits have large eyeballs, but they have large optic disc and myelinated retinal nerve fibers in their retinas, and the growth pattern of retinal vessels were also different to the human retinas. Unlike monkeys and rabbits, the retinal vessels of SD rats and BALB/c mice were widely distributed and clear. The OCT performance of them were similar with human beings except the macular.
Conclusions: Monkey is a good model to study changes in retinal structure associated with fundus disease, rabbits are not suitable for studies on retinal vessel diseases and optic nerve diseases, and rats and mice are good models for retinal vascular diseases. These measures will help guide the choice of model and measurement technology and reduce the number of experimental animals required.
Review Article

A narrative review of limbal stem cell deficiency & severe ocular surface disease

:22-35
 
Background and Objective: Limbal stem cell deficiency (LSCD) describes the clinical condition when there is dysfunction of the corneal epithelial stem/progenitor cells and the inability to sustain the normal homeostasis of the corneal epithelium. The limbal stem cells are located in a specialized area of the eye called the palisades of Vogt (POV). There have been significant advances in the diagnosis and management of LSCD over the past decade and this review focuses on the pathophysiology of LSCD, its clinical manifestations, diagnosis, and causes.
Methods: Papers regarding LSCD were searched using PubMed to identify the current state of diagnosis and causes of LSCD published through to June 2022. 
Key Content and Findings: LSCD is clinically demonstrated by a whorl-epitheliopathy, loss of the POV, and conjunctivalization of the cornea. The diagnosis of this condition is based on clinical examination and aided by the use of impression cytology, in vivo confocal microscopy, and anterior segment optical coherence tomography (asOCT). There are many causes of LSCD, but those which are most common include chemical injuries, aniridia, contact lens wear, and Stevens-Johnson syndrome (SJS).
Conclusions: While this condition is most commonly encountered by corneal specialists, it is important that other ophthalmologists recognize the possibility of LSCD as it may arise in other co-morbid eye conditions.
Editorial
Original Article

Changes in crystalline lens parameters during accommodation evaluated using swept source anterior segment optical coherence tomography

:-
 

Backgrounds: To assess changes in anterior segment biometry during accommodation using a swept source anterior segment optical coherence tomography (SS-OCT).

Methods: One hundred-forty participants were consecutively recruited in the current study. Each participant underwent SS-OCT scanning at 0 and ?3 diopter (D) accommodative stress after refractive compensation, and ocular parameters including anterior chamber depth (ACD), anterior and posterior lens curvature, lens thickness (LT) and lens diameter were recorded. Anterior segment length (ASL) was defined as ACD plus LT. Lens central point (LCP) was defined as ACD plus half of the LT. The accommodative response was calculated as changes in total optical power during accommodation.

Results: Compared to non-accommodative status, ACD (2.952±0.402 vs. 2.904±0.382 mm, P<0.001), anterior (10.771±1.801 vs. 10.086±1.571 mm, P<0.001) and posterior lens curvature (5.894±0.435 vs. 5.767±0.420 mm, P<0.001), lens diameter (9.829±0.338 vs. 9.695±0.358 mm, P<0.001) and LCP (4.925±0.274 vs. 4.900±0.259 mm, P=0.010) tended to decreased and LT thickened (9.829±0.338 vs. 9.695±0.358 mm, P<0.001), while ASL (6.903±0.279 vs. 6.898±0.268 mm, P=0.568) did not change significantly during accommodation. Younger age (β=0.029, 95% CI: 0.020 to 0.038, P<0.001) and larger anterior lens curvature (β=?0.071, 95% CI: ?0.138 to ?0.003, P=0.040) were associated with accommodation induced greater steeping amplitude of anterior lens curvature. The optical eye power at 0 and ?3 D accommodative stress was 62.486±2.284 and 63.274±2.290 D, respectively (P<0.001). Age was an independent factor of accommodative response (β=?0.027, 95% CI: ?0.038 to ?0.016, P<0.001).

Conclusions: During ?3 D accommodative stress, the anterior and posterior lens curvature steepened, followed by thickened LT, fronted LCP and shallowed ACD. The accommodative response of ?3 D stimulus is age-dependent.

Review Article

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 
Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Review Article

Conjunctival flaps for the treatment of advanced ocular surface disease—looking back and beyond

:-
 
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
Review Article

Psychophysics in the ophthalmological practice—I. visual acuity

:-
 
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息