Retina and Posterior Segment

AB010. Promotion of BMP9/ALK1 quiescence signaling for the prevention of diabetic macular edema (DME)

:-
 

Background: Sight-threatening diabetic macular edema (DME) is caused by increased microvascular permeability. While few direct vascular targeting strategies are available, VEGF pathway inhibition has shown to be effective in reducing retinal vascular leakage but is associated with non-negligible side effects. Thus, more options are needed. Vascular specific Activin-like kinase receptor type I (ALK1) pathway and its circulating ligand Bone morphogenetic protein-9 (BMP9) is known for its potent quiescent and stabilizing effect on the vasculature. However, little is known about this pathway in the context of microvascular permeability associated with diabetes. We hypothesize that BMP9/ALK1 pathway is inhibited in diabetic (DB) retinas leading to vascular destabilization and leakage and that its activation could re-establish proper vascular endothelial barrier functions (EBF).

Methods: The effect of hyperglycemia (i.e., HG >10 mM of D-glucose) on Alk1 signaling was evaluated in vitro by subjecting endothelial cells (EC) to increasing concentrations of D-glucose (5, 11, 25 mM) and in vivo using DB mice (Streptozotocin-induced diabetes). The contribution of Alk1 signaling on EBF was evaluated using Evans Blue permeation in inducible endothelial specific Alk1 KO mice. To evaluate the potential protective effects of BMP9/Alk1 signaling on EBF, BMP9 overexpression was achieved using adenoviral delivery in DB mice. Statistical-One-Way ANOVA or Student’s t-test was used.

Results: Endothelial tissue from DB mice showed a significant inhibition of BMP9/ALK1-canonical Smad1,5,8 quiescence signaling (DB n=5; CTL n=4; P<0.01), which was associated with reduced expression of target genes (JAG1, Id1,3, Hey1,2 & HES). Moreover, we showed that retinal hyperpermeability associated with diabetes was exacerbated in Alk1 heterozygote mice (n=4–9/group; P<0.0001). Finally, we demonstrated that activation of Alk1 signaling in ECs prevented vascular permeability induced by HG, both in vitro (n=3; P=0.009) and in vivo (n=4–9/group; P<0.0001).

Conclusions: Consistent with our hypothesis, vascular stability and quiescence induced by BMP9-ALK1 signaling is inhibited in the DB/HG endothelium which could be an important factor in vascular leakage leading to DME. Our results show that activation of this pathway could offer a therapeutically interesting future option to slow down the onset of DME.

Retina and Posterior Segment

AB002. Guidance of vascular patterning in ocular development and disease

:-
 

Abstract: Ocular vessel networks develop in a highly stereotyped fashion. Abnormal ocular angiogenesis is associated with major diseases including age-related macular degeneration and diabetic retinopathy. Better understanding of mechanisms driving angiogenesis is expected to uncover novel targets to prevent vision loss. Capillary growth is driven by endothelial tip cells, which are selected by dynamic interplay between VEGF, Notch and BMP signaling, with VEGF acting as a positive regulator, and Notch and the BMP receptor Alk1 acting as negative regulators of tip cell formation. The concerted interplay between these molecules ensures that appropriate tip cell numbers leading new vessel branches are formed. In addition, guidance receptors including Neuropilins and Roundabout receptors contribute to vascular patterning by regulating VEGF and BMP signaling. Possibilities to target these pathways during pathological ocular neovascularization will be discussed.

Editorial
Case Report

Rescue with intravitreal bevacizumab in aggressive posterior retinopathy of prematurity poorly responsive to laser treatment

:-
 

Abstract: Successful management of a case of aggressive posterior retinopathy of prematurity (APROP) poorly responsive to laser therapy with intravitreal bevacizumab (IVB) is discussed. IVB is useful as rescue therapy in such cases, if given within the correct window period post laser therapy.

Review Article

Treatment for diabetic macular oedema: looking further into the evidence

:-
 

Keywords: Diabetic macular edema (DME); diabetic macular oedema (DMO); anti-vascular endothelial growth factor (anti-VEGF); laser photocoagulation; randomised clinical trials (RCTs); retina; diabetic retinopathy

Review Article

Age related macular degeneration: from evidence based-care to experimental models

:-
 

Abstract: To describe the current aging population in China and globally, especially as it applies to age-related macular degeneration (AMD). To review the current standards of care for treating both wet (exudative) eAMD and dry (atrophic) aAMD. And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study (AREDS) using eye bank tissue. A literature search that outlines current aging populations, standards of clinical treatment as defined by large, multicenter, randomized clinical trials that present level-I data with a low risk for bias. An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes. Analysis includes proteomic, cellular, and functional genomics. The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth (anti-VEGF) agents alone or in combination with photodynamic therapy. Monotherapy treatment intervals may be monthly, as needed, or by using a treat-and-extend (TAE) protocol. There are no proven therapies for aAMD. AMD that is phenotypically defined at AREDS level 3, should be managed with the use of anti-oxidant vitamins, lutein/zeaxanthin and zinc (AREDS-2 formulation). By understanding the multiple etiologies in the pathogenesis of AMD (i.e., oxidative stress, inflammation, and genetics), the use of human eye bank tissues graded according to the Minnesota Grading System (MGS) will enable future insights into the pathogenesis of AMD. Initial AMD management is with lifestyle modification such as avoiding smoking, eating a healthy diet and using appropriate vitamin supplements (AREDS-2). For eAMD, anti-VEGF therapies using either pro re nata (PRN) or TAE protocols are recommended, with photodynamic therapy in appropriate cases. New cellular information will direct future, potential therapies and these will originate from experimental models, such as the proposed eye bank model using the MGS, that leverages the prospective AREDS database.

Original Article

Sirolimus eye drops inhibit acute alkali-burn-induced corneal neovascularization by regulating VEGFR2 and caspase-3 expressions

:-
 

Background: To investigate the effect of sirolimus (SRL) eye drops on acute alkali-burn-induced corneal neovascularization (CNV) and explore its possible mechanism.

Methods: A total of 57 male Sprague-Dawley rats weighing 160–180 g were randomly divided into four groups including a normal control group (NC group, n=12), an untreated alkali-burned model control group (MC group, n=15), a blank eye drop treatment group (BT group, n=15), and an SRL eye drop treatment group (ST group, n=15). Corneal inflammation and CNV were observed and scored under a slit-lamp microscope 3, 7, and 14 days after alkali exposure. Three rats were randomly sacrificed in each group before modeling and 3, 7, 14 days after modeling, and the corneas of right eyes were harvested for Western blotting to compare the expression levels of VEGFR2 and caspase-3.

Results: Corneal inflammation scoring showed that the corneal edema and conjunctival congestion were severe in the MC, BT, and ST groups 1 day after alkali exposure but were alleviated at day 3. The corneal transparency was significantly higher in the ST group than in the MC and BT groups at days 7 (F=9.77, P<0.05) and 14 (F=5.81, P<0.05). At day 1, the corneal limbal vascular network was markedly filled. SNV was obvious at days 3, 7, and 14. The new blood vessels were shorter and sparser in the ST group than in the MC and BT groups, and the CNV scores showed significant differences among these groups (day 3: F=8.60, P<0.05; day 7: F=11.40, P<0.05; and day 14: F=41.59, P<0.01). Western blotting showed that the expressions of VEGFR2 and caspase-3 were low before modeling and showed no significant difference among the different groups (F=0.52, P>0.05; F=0.98, P>0.05). The corneal expression of VEGFR2 became significantly higher in the MC and BT groups than in the ST group 3, 7, and 14 days after alkali exposure, and there were significant differences in relative gray-scale values among these groups (day 3: F=32.16, P<0.01; day 7: F=85.96, P<0.01; day 14: F=57.68, P<0.01). The increase in the corneal expression of caspase-3 was significantly larger in the ST group than in the MC and BT groups at days 3, 7, and 14, and there were significant differences in relative gray-scale values among groups (day 3: F=32.16, P<0.01; day 7: F=53.02, P<0.01; day 14: F=38.67, P<0.01).

Conclusions: SRL eye drops can alleviate acute alkali-burn-induced corneal inflammation and inhibit alkali-burn-induced CNV in rat models. It can reduce VEGFR2 expression and increase caspase-3 expression in the corneal tissue, which may contribute to the inhibition of alkali-burn-induced CNV.

Review Article

Amniotic membrane as a novel treatment in age-related macular degeneration: a narrative review

:-
 

Abstract: Age-related macular degeneration (ARMD), one of the most common causes of blindness, should be considered more due to its exponential increase in the coming 20 years as a result of increasing the age of the population. Whereas more recent studies offered newer scaling systems for ARMD, traditionally it is classified as the early and late stages. The main injury in this disease occurred in retinal pigment epithelium (RPE) and the retina. RPE cells have a crucial role in hemostasis and supporting photoreceptors. In the early stages, damages to RPE are minimal and mainly no treatment is needed because most patients are asymptomatic. However, in the late stages, RPE impairment may lead to the invasion of choroidal vessels into the retina. Although anti-angiogenic agents can inhibit this abnormal growth of blood vessels, they cannot stop it completely, and finally, total loss of retinal cells may occur (geographical atrophy). Since this prevalent disease has not had any cure yet, the concept of substituting the RPE cells should be considered. Repairing the injury to central nervous system cells is almost impossible because the regenerative capacity of these cells is limited. Recently, the use of regenerative substitutes has been suggested to replace damaged tissues. Amniotic membrane (AM) has been raised as a suitable substitute for damaged RPE cells due to all of its unique properties: pluripotency, anti-angiogenic effect, and anti-inflammatory effect. Based on the few studies that have been published so far, it seems that the use of this membrane in the treatment of ARMD can be helpful, but more studies are needed.

Review Article

Novel treatments and genetics of age-related macular degeneration-a narrative review

:-
 

Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.

Review Article

Molecular structure, pharmacokinetics and clinical evidence of brolucizumab: a narrative review

:-
 

Abstract: Macular neovascularization (MNV) is the hallmark of neovascular age-related macular degeneration (nAMD), one of the leading causes of vision loss in the developed world. The current MNV standard of care including frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections, although has revolutionized favorably the treatment, places a substantial burden on patients, caregivers, and physicians. Brolucizumab is a newly developed single-chain antibody fragment that inhibits activation of VEGF receptor 2 with in vitro affinity and potency comparable to commercially-available anti-VEGF agents. Its small molecular weight and its design allow for high solubility and retinal tissue penetration, and improve bynding affinity to the target. Also a high clearance rate leading to minimal systemic exposure was observed. Brolucizumab has shown similar gains in visual acuity compared with other anti-VEGF molecules but a higher and earlier resolution of nAMD related fluid, achieving sustained macular dryness with longer mantainance injection interval ranging from 8 to 12 weeks after monthly loading doses. Rare cases of ocular inflammation also including retinal vasculitis and retinal vascular occlusions referred to an immune-mediated reaction posed safety concerns on selected patients and mantainance treatment interval shorter than 8 weeks.The present review summarizes several key points including the molecular structure and pharmacokinetics, the preclinical and clinical evidence of brolucizumab administration evaluating its efficacy, tolerability, and safety, extended dosing regimens and other indications still under clinical investigation.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息