Review Article

Retinal imaging in inherited retinal diseases

:-
 

Abstract: Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].

Review Article

Optical coherence tomography in compressive lesions of the anterior visual pathway

:-
 

Abstract: Optical coherence tomography (OCT) provides a non-invasive analysis of the retina in vivo. Lesions which compress the anterior visual pathway can cause anterograde and retrograde neuro-degeneration. Retrograde structural changes to the retina can be detected by OCT. Analyzing patterns of change on OCT can guide diagnostic and treatment decisions for lesions compressing the optic nerve and chiasm to minimize loss of visual function. From our review of current literature, it is clear that thinning of both the retinal nerve fiber and ganglion cell layers (GCLs) can indicate compression. These parameters correlate with visual function loss as detected by perimetry. Furthermore, these measurements have shown to be the most reliable biomarkers to date in predicting visual recovery after treatment of these compressive lesions.

Review Article

Overview of optical coherence tomography in neuro-ophthalmology

:-
 

Abstract: Optical coherence tomography (OCT) is a widely used non-invasive medical imaging technology that has revolutionized clinical care in ophthalmology. New developments, such as OCT angiography (OCTA) are expected to contribute even further to the widespread use of OCT-based imaging devices in the diagnosis and monitoring of patients with ophthalmic diseases. In recent years, many of the disadvantages such as limited field of view and imaging artefacts have been substantially reduced. Similar to the progress achieved in the assessment of retinal disorders, OCT is expected to change the approach to patients seen in the neuro-ophthalmology clinic. In this article, we review the technical features of OCT and OCT-based imaging techniques, highlighting the specific factors that should be taken into account when interpreting OCT in the field of neuro-ophthalmology.

Review Article

Optical coherence tomography use in idiopathic intracranial hypertension

:-
 

Abstract: Idiopathic intracranial hypertension (IIH) is a condition in which elevated pressure in the cerebrospinal fluid can lead to optic nerve head (ONH) dysfunction and subsequent visual impairment. Physicians are currently limited in their ability to monitor and manage this condition, as clinical symptoms and exam findings are often delayed in response to changes in intracranial pressure. In order to find other biomarkers of disease, researchers are using imaging modalities such as optical coherence tomography (OCT) to observe microscopic changes in the eye in this condition. OCT can create 2-dimensional and 3-dimensional high definition images of the retina of the ONH and has been used to study various conditions such as glaucoma and multiple sclerosis. Numerous studies have used OCT in IIH as well, and they have shown that certain retinal layers and the ONH change in thickness and shape in both the short and long term with intracranial pressure changes. OCT is a promising modality for clinical and scientific evaluation of IIH as it is a noninvasive and practical tool to obtain in depth images. This review will discuss how OCT can be used to assess a patient with IIH, both before and after treatment, along with its limitations and future applications.

Review Article
Editorial
Review Article

Amniotic membrane as a novel treatment in age-related macular degeneration: a narrative review

:-
 

Abstract: Age-related macular degeneration (ARMD), one of the most common causes of blindness, should be considered more due to its exponential increase in the coming 20 years as a result of increasing the age of the population. Whereas more recent studies offered newer scaling systems for ARMD, traditionally it is classified as the early and late stages. The main injury in this disease occurred in retinal pigment epithelium (RPE) and the retina. RPE cells have a crucial role in hemostasis and supporting photoreceptors. In the early stages, damages to RPE are minimal and mainly no treatment is needed because most patients are asymptomatic. However, in the late stages, RPE impairment may lead to the invasion of choroidal vessels into the retina. Although anti-angiogenic agents can inhibit this abnormal growth of blood vessels, they cannot stop it completely, and finally, total loss of retinal cells may occur (geographical atrophy). Since this prevalent disease has not had any cure yet, the concept of substituting the RPE cells should be considered. Repairing the injury to central nervous system cells is almost impossible because the regenerative capacity of these cells is limited. Recently, the use of regenerative substitutes has been suggested to replace damaged tissues. Amniotic membrane (AM) has been raised as a suitable substitute for damaged RPE cells due to all of its unique properties: pluripotency, anti-angiogenic effect, and anti-inflammatory effect. Based on the few studies that have been published so far, it seems that the use of this membrane in the treatment of ARMD can be helpful, but more studies are needed.

Review Article

Novel treatments and genetics of age-related macular degeneration-a narrative review

:-
 

Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.

Review Article

Molecular structure, pharmacokinetics and clinical evidence of brolucizumab: a narrative review

:-
 

Abstract: Macular neovascularization (MNV) is the hallmark of neovascular age-related macular degeneration (nAMD), one of the leading causes of vision loss in the developed world. The current MNV standard of care including frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections, although has revolutionized favorably the treatment, places a substantial burden on patients, caregivers, and physicians. Brolucizumab is a newly developed single-chain antibody fragment that inhibits activation of VEGF receptor 2 with in vitro affinity and potency comparable to commercially-available anti-VEGF agents. Its small molecular weight and its design allow for high solubility and retinal tissue penetration, and improve bynding affinity to the target. Also a high clearance rate leading to minimal systemic exposure was observed. Brolucizumab has shown similar gains in visual acuity compared with other anti-VEGF molecules but a higher and earlier resolution of nAMD related fluid, achieving sustained macular dryness with longer mantainance injection interval ranging from 8 to 12 weeks after monthly loading doses. Rare cases of ocular inflammation also including retinal vasculitis and retinal vascular occlusions referred to an immune-mediated reaction posed safety concerns on selected patients and mantainance treatment interval shorter than 8 weeks.The present review summarizes several key points including the molecular structure and pharmacokinetics, the preclinical and clinical evidence of brolucizumab administration evaluating its efficacy, tolerability, and safety, extended dosing regimens and other indications still under clinical investigation.

Review Article

Statins for age related macular degeneration: promising but unproven

:-
 

Abstract: Statins are used widely to treat hypercholesterolemia and atherosclerotic cardiovascular disease. They have inflammatory and immunomodulatory effects potentially useful for managing systemic autoimmune diseases such as rheumatoid arthritis, lupus erythematosus and multiple sclerosis. Statins also have anti-oxidative and large-vessel endothelial supportive properties that occur independent of their lipid-lowering effects. Additionally, statins can suppress macrophage and microglial activation responsible for initiating inflammatory cytokine release. More than forty percent of adults aged 65 years or older use statins in the United States and Australia, a prevalence that increases with age. The effects of statin usage on ophthalmic practice are probably underrecognized. Cardiovascular disease and age-related macular degeneration (AMD) share common risk factors, consistent with the “vascular model” of AMD pathogenesis that implicates impaired choroidal circulation in Bruch’s membrane lipoprotein accumulation. AMD has a complex multifactorial pathogenesis involving oxidative stress, choroidal vascular dysfunction, dysregulated complement-cascade-mediated inflammation and pro-inflammatory and pro-angiogenic growth factors. Many of these components are hypothetically amenable to the primary (cholesterol lowering) and secondary (anti-inflammatory, anti-oxidative, anti-vasculopathy) effects of statin use. Experimental studies have been promising, epidemiological trails have produced conflicting results and three prospective clinical trials have been inconclusive at demonstrating the value of statin therapy for delaying or preventing AMD. Cumulative evidence to date has failed to prove conclusively that statins are beneficial for preventing or treating AMD.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息