Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.
Background: Retinopathy of prematurity (ROP) is considered as the most common reason for blindness in children, particularly in preterm infants. The disease is characterized by the dysregulation of angiogenic mechanisms due to preterm birth, leading ultimately to vascular abnormalities and pathological neovascularization (NV). Retinal detachment and vision loss could represent a concrete risk connected to the most severe forms of ROP, also characterized by inflammation and retinal cell death.
Methods: During the last decades, many animal models of oxygen-induced retinopathy (OIR) have been recognized as useful tools to study the mechanisms of disease, since they reproduce the hallmarks typical of human ROP. Indeed, modulation of retinal vascular development by exposure to different oxygen protocols is possible in these animals, reproducing the main pathological phenotypes of the disease. The easy quantification of abnormal NV and the possibility to perform electrophysiologic, histological and molecular analyses on these models, make OIR animals a fundamental instrument in studying the pathophysiology of ROP and the effects of novel treatments against the disease.
Discussion: Here, the most commonly used OIR protocols in rodents, such as mice and rats, are described as well as the main pathological outcomes typical of these models. Despite their limitations and variables which should be considered whilst using these models, OIR models display several characteristics which have also been confirmed in human patients, validating the usefulness of such animals in the pre-clinical research of ROP.