Background: We investigated the role of beta-adrenergic receptor (B-AR) on choroidal neovascularization (CNV) in an animal model of age-related macular degeneration in mice.
Methods: The angiogenic effect of the B-AR was evaluated in retinal pigment epithelium (RPE)-choroid explants from C57Bl6 mice stimulated with propranolol or isoproterenol (10 μM) (respectively antagonist and agonist of the B-AR) during 24 h. Conversely, a classic choroidal neovascularization (CNV) model induced by laser burn in C57Bl6 mice (8 weeks) was used to assess the anti-angiogenic effect of propranolol. In this experiment, mice were treated with intraperitoneal propranolol (6 mg/kg/d) or vehicle (saline solution) daily for 10 days, starting on day 4 after laser burn and until sacrifice (day 14). Immunostaining analysis on retinal flatmounts and cryosections were performed to determine the surface of CNV, the distribution of B-AR and the number and morphology of microglia/macrophages associated with CNV. To explore if the antiangiogenic effect of propranolol involved the modulation of the inflammatory microenvironment associated with CNV, we used RPE primary cells, J774 macrophages cell line and polarized M1 and M2 bone marrow-derived macrophage (BMDM). Choroidal explants treated with conditioned media (CM) from J774 or polarized M1/M2 BMDM pre-treated with propranolol to confirm the anti-angiogenic effect of propranolol. Expression of angiogenic factors was evaluated by RT PCR and Elisa.
Results: The expression and distribution of the B-1, B-2 and B-3 adrenergic receptors were localized in the choroid and RPE cells. The stimulation of RPE-choroid explants with isoproterenol increased CNV compared to vehicle, while propranolol decreased CNV. In vivo, propranolol inhibited significantly the levels of VEGF and CNV growth in laser burn model compared to the vehicle. Additionally, the treatment with propranolol decremented the number of activated (amoeboid shape) microglia/macrophages but surprisingly, the number of non-activated microglia/macrophages around the CNV was higher than with the vehicle treatment. In vitro, propranolol modulated the angiogenic balance in macrophages promoting anti-angiogenic factors expression, especially with M2 BMDM. CM from macrophages pre-treated with propranolol reduced CNV on choroidal explants.
Background: The neovascular aged-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly. It is presently treated by anti-VEGF intravitreal injection in order to stop the neovascularization. In seeking of more efficient treatments to prevent retinal damage, it has been proposed that the kinin-kallikrein system (KKS), a key player in inflammation, could be involved in AMD etiology. However, the role of kinin receptors and their interaction with VEGF in AMD is poorly understood.
Methods: In order to address this question, choroidal neovascularization (CNV) was induced in the left eye of Long-Evans rat. After laser induction, anti-VEGF or IgG control were injected into the vitreal cavity. Gene expression was measured by qRT-PCR, retinal adherent leukocytes were labelled with FITC-Concanavalin A lectin, vascular leakage by the method of Evans blue and cellular localisation by immunohistochemistry.
Results: The number of labelled adherent leucocytes was significantly increased in laser-induced CNV compared to the control eye. This was significantly reversed by one single injection of anti-VEGF. Extravasation of Evans blue dye was significantly increased in laser-induced CNV eyes compared to control eyes and partially reversed by one single injection of anti-VEGF or by R954 treatment. The mRNA expression of inflammatory mediators was significantly increased in the retina of CNV rats. Immunodetection of B1R was significantly increased in CNV eyes. B1R immunolabeling was detected on endothelial and ganglion cells.
Conclusions: This study is the first to highlight an effect of the kinin/kallikrein system in a model of CNV that could be reduced by both anti-VEGF therapy and topically administered B1R antagonist R-954.
Abstract: Pediatric neuro-ophthalmology is a subspecialty within neuro-ophthalmology. Pediatric neuro-ophthalmic diseases must be considered separate from their adult counterparts, due to the distinctive nature of the examination, clinical presentations, and management choices. This manuscript will highlight four common pediatric neuro-ophthalmic disorders by describing common clinical presentations, recommended management, and highlighting recent developments. Diseases discussed include pediatric idiopathic intracranial hypertension (IIH), pseudopapilledema, optic neuritis (ON) and optic pathway gliomas (OPG). The demographics, diagnosis and management of common pediatric neuro-ophthalmic disease require a working knowledge of the current research presented herein. Special attention should be placed on the differences between pediatric and adult entities such that children can be appropriately diagnosed and treated.
Abstract: Successful management of a case of aggressive posterior retinopathy of prematurity (APROP) poorly responsive to laser therapy with intravitreal bevacizumab (IVB) is discussed. IVB is useful as rescue therapy in such cases, if given within the correct window period post laser therapy.
Background: Disruption of the microstructure in corneal stroma can lead to the loss of transparency. The lack of a characterization method for the microstructure prevents such scaffolds to be implemented in tissue transplantation. The non-invasive, three-dimensional (3D) rendering multiphoton microscopy (MPM) poses the potential to solve this problem.
Methods: MPM images and data analyses were performed with three kinds of samples with known and different quality. Isosurfaces (ISOs) were constructed for the evaluation of void volume and collagen distribution.
Results: The differences in the microstructures of these samples were revealed with clear indications and links to their behaviours in rehydration and possible transparency. According to this analysis, the scaffold with the highest void space ratio amongst the three presented the highest successful rates to be thoroughly rehydrated.
Conclusions: Such a method can be developed for assessing the quality of tissue engineered corneas, or donated corneas, and be useful as a powerful research tool in cornea related research.
Abstract: Pathologic myopia is the major cause of the loss of the best-corrected visual acuity (BCVA) worldwide, especially in East Asian countries. The loss of BCVA is caused by the development of myopic macula patchy, myopic traction macula patchy, and myopic optic neuropathy (or glaucoma). The development of such vision-threatening complications is caused by eye deformity, characterized by a formation of posterior staphyloma. The recent advance in ocular imaging has greatly facilitated the clarification of pathologies and pathogenesis of pathological myopia and myopia-related complications. These technologies include ultra-wide field fundus imaging, swept-source optical coherence tomography, and 3D MRI. In addition, the new treatments such as anti-VEGF therapies for myopic choroid all neovascularization have improved the outcome of the patients. Swept-source OCT showed that some of the lesions of myopic maculopathy were not simply chorioretinal atrophy but were Bruch’s membrane holes. Features of myopic traction maculopathy have been analyzed extensively by using OCT. The understanding the pathophysiology of complications of pathologic myopia is considered useful for better management of this blinding eye disease.