Background: Using a randomized controlled trial (RCT), to assess the efficacy of the folded technique of self-adherent wrap to eyes after orbital tumour extirpation and compare it with the classic technique.
Methods: A single-centre, prospective, randomized, controlled study was conducted among 128 patients who underwent orbital tumour extirpation in this study. The folded and classic techniques of applying self-adherent wraps were randomly allocated to patients (1:1). The primary endpoint was the interface pressure on the affected eye. Secondary efficacy endpoints were the interface pressure above and below the ear of the affected side, above the ear of the non-affected side, and discomfort scores. Postoperative complications were observed for 24 hours.
Results: The interface pressure with the folded technique on the affected eye was neither inferior nor superior to the classic technique (1.33±0.07 vs. 1.41±0.09 mmHg, P=0.480). Most importantly, the pressure at three other points outside of the affected eye, including above and below the ear of the affected side, and above the ear of the non-affected side, were significantly higher when using the classic technique than when using the folded technique (P=0.041, 0.019, and 0.047, respectively). Discomfort scores were higher in the classic technique group than in the folded technique group (2.93±0.30 vs.1.52±0.19, P≤0.001).
Conclusions: Findings demonstrated the advantages of using folded technique to apply self-adherent wrap for wounds after orbital tumour extirpation with lower interface pressure outside of the affected eye and patient discomfort scores, without influencing pressure on the affected eye comparing with the classic technique.
Abstract: The rare disease of chronic infantile neurological cutaneous and articular (CINCA) syndrome, is caused by the over-secretion of interleukin (IL)-1β due to a gain-of-function NLRP3 gene mutation in the autosomal chromosome which often involves in eyes. In this report, we studied a 9-year-old girl with CINCA. The eyes were also involved and presented bilateral papilledema. Genetic testing revealed that the symptoms were caused by a novel gene mutation site (c.913G>A, p. D305N) in conservative domain exon-3 of NLRP3 which is gain-function gene of CINCA. The patient had the characteristic facial features, frontal fossa and saddle nose, manifested the generalized urticaria-like skin rash at two weeks after birth, periodic fever 6 months after birth, sensorineural deafness at 7 years old, and bilateral papilledema, aseptic meningitis and knee arthropathy at 9 years old. White cell counts, C-reactive protein increased and intracranial pressure raised to 300 mmH2O. The meningeal thickening enhanced by gadolinium in magnetic resonance imaging (MRI). Based on clinical features and genetic test, the girl was diagnosed bilateral papilledema secondary to CINCA and administered prednisone and lowered intracranial pressure medicine to resolve symptoms. With 3-year follow-up, patient had no inflammatory flare-up with visual acuity improvement. The finding of novel genetic mutation site (p. D305N) in NLRP3 gene expanded genotype spectrum associated with CINCA. This case also expanded the cause spectrum of papilledema and it highlighted systemic disease history for patients with bilateral papilledema.
Abstract: Glaucoma is a group of eye diseases that seriously threaten human visual health. Increased intraocular pressure is the main clinical manifestation and diagnostic basis of glaucoma and is directly related to increased resistance to aqueous circulation channels. The trabecular meshwork (TM) is a multi-layer spongy tissue that filters aqueous humor. Its structure changes and the filtering capacity decreases, leading to an increase in intraocular pressure. Surgical methods for TM are constantly updated. Compared with traditional glaucoma surgical techniques, such as external trabeculectomy, the development of a new surgical technique—minimally invasive glaucoma surgery (MIGS)—enables the operation to reduce intraocular pressure efficiently while further reducing damage to the eye. MIGS achieves the purpose of surgery mainly by optimizing the TM outflow pathway, uveoscleral outflow pathway, and subconjunctival outflow pathway. A new surgical instrument, the Kahook Dual Blade, appears to optimize the TM outflow pathway in the surgical technique. The Kahook Dual Blade is a new type of angle incision instrument. Because of its unique double-edged design, in the process of goniotomy, it can effectively reduce the damage to the anterior chamber angle structure and accurately remove the appropriate amount of TM so that the aqueous humor can flow out smoothly. Kahook Dual Blade goniotomy has the advantages of avoiding complications and foreign body sensation caused by intraocular implants. The operation time is relatively short, the surgical technique is easy to master, and the TM resection scope can be determined based on the patient’s condition. It can be used to treat some clinically meaningful glaucoma. This article is organized as follows. We present the following article following the Narrative Review reporting checklist.
Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.
Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application.
Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength.
Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations.
Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.