Editorial
Case Report

Periocular necrotising fasciitis after traumatic laceration and concurrent COVID-19 infection: a case report

:-
 

Background: Necrotising fasciitis (NF) is a rare but severe necrotising infection of the subcutaneous tissues. We report a case of periocular NF associated with a concurrent COVID-19 infection and explore potential mechanisms of pathogenesis of COVID-19 infection and necrotising superinfections.

Case Description: A 33-year-old previously healthy female presented with right-sided progressive periocular swelling, erythema, pain and fever, two days after sustaining a laceration to the right superolateral brow from a clenched fist. She had a concurrent COVID-19 infection, detected on nasopharyngeal polymerase chain reaction swab thirteen days prior to presentation and again at presentation. She did not have an oxygen requirement. There was a large bulbous collection of the right upper lid with fluctuance and overlying erythema, and a communicating sinus drained frank pus from the superolateral brow. Pre-operative T2-weighted MRI demonstrated fascial hyperintensity involving the pre-septal tissues and extending to the anterior temporal fossa. She was commenced on intravenous meropenem, clindamycin and vancomycin, and underwent early surgical debridement. Initial debridement demonstrated right upper lid necrosis involving the dermal and pre-septal layers, including the orbicularis, but sparing the tarsus. Streptococcus pyogenes was isolated, and she was continued on a prolonged course of intravenous antibiotic. Periocular defects were repaired with a right-sided brow adipo-fascial flap based on the supratrochlear artery, browpexy and dual full thickness skin grafts on the right upper lid and flap.

Conclusions: NF is an acute fulminant infection rarely affecting the periocular tissues. This represents a unique case of periocular NF associated with a concurrent COVID-19 infection.

Letter to the Editor
Editorial
Editorial
Original Article

Changes in crystalline lens parameters during accommodation evaluated using swept source anterior segment optical coherence tomography

:-
 

Backgrounds: To assess changes in anterior segment biometry during accommodation using a swept source anterior segment optical coherence tomography (SS-OCT).

Methods: One hundred-forty participants were consecutively recruited in the current study. Each participant underwent SS-OCT scanning at 0 and ?3 diopter (D) accommodative stress after refractive compensation, and ocular parameters including anterior chamber depth (ACD), anterior and posterior lens curvature, lens thickness (LT) and lens diameter were recorded. Anterior segment length (ASL) was defined as ACD plus LT. Lens central point (LCP) was defined as ACD plus half of the LT. The accommodative response was calculated as changes in total optical power during accommodation.

Results: Compared to non-accommodative status, ACD (2.952±0.402 vs. 2.904±0.382 mm, P<0.001), anterior (10.771±1.801 vs. 10.086±1.571 mm, P<0.001) and posterior lens curvature (5.894±0.435 vs. 5.767±0.420 mm, P<0.001), lens diameter (9.829±0.338 vs. 9.695±0.358 mm, P<0.001) and LCP (4.925±0.274 vs. 4.900±0.259 mm, P=0.010) tended to decreased and LT thickened (9.829±0.338 vs. 9.695±0.358 mm, P<0.001), while ASL (6.903±0.279 vs. 6.898±0.268 mm, P=0.568) did not change significantly during accommodation. Younger age (β=0.029, 95% CI: 0.020 to 0.038, P<0.001) and larger anterior lens curvature (β=?0.071, 95% CI: ?0.138 to ?0.003, P=0.040) were associated with accommodation induced greater steeping amplitude of anterior lens curvature. The optical eye power at 0 and ?3 D accommodative stress was 62.486±2.284 and 63.274±2.290 D, respectively (P<0.001). Age was an independent factor of accommodative response (β=?0.027, 95% CI: ?0.038 to ?0.016, P<0.001).

Conclusions: During ?3 D accommodative stress, the anterior and posterior lens curvature steepened, followed by thickened LT, fronted LCP and shallowed ACD. The accommodative response of ?3 D stimulus is age-dependent.

Original Article

Subjective refractions determined by Dyop? and LogMAR chart as fixation targets

:-
 

Background: Dyop® is a dynamic optotype with a rotating and segmented visual stimulus. It can be used for visual acuity and refractive error measurement. The objective of the study was to compare refractive error measurement using the Dyop® acuity and LogMAR E charts.

Methods: Fifty subjects aged 18 or above with aided visual acuity better than 6/12 were recruited. Refractive error was measured by subjective refraction methods using the Dyop® acuity chart and LogMAR E charts and the duration of measurement compared. Thibo’s notation was used to represent the refractive error obtained for analysis.

Results: There was no significant difference in terms of spherical equivalent (M) (P=0.96) or J0 (P=0.78) and J45 (P=0.51) components measured using the Dyop® acuity and LogMAR E charts. However, subjective refraction measurement was significantly faster using the Dyop® acuity chart (t=4.46, P<0.05), with an average measurement time of 419.90±91.17 versus 452.04±74.71 seconds using the LogMAR E chart.

Conclusions: Accuracy of refractive error measurement using a Dyop® chart was comparable with use of a LogMAR E chart. The dynamic optotype Dyop® could be considered as an alternative fixation target to be used in subjective refraction.

Review Article

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 
Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Review Article

Conjunctival flaps for the treatment of advanced ocular surface disease—looking back and beyond

:-
 
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息