Abstract: Myopia and astigmatism, two common refractive errors frequently co-exist, are degrading vision at all working distances in populations worldwide. Eyeballs having high degrees of myopia and astigmatism are known to exhibit abnormal eye shape at the anterior and posterior eye segments, but whether the outer coats of these abnormal eyeballs, cornea anteriorly and sclera posteriorly, are regulated by region-specific molecular mechanism remains unclear. Here we presented the changes in eye shape and mRNA expression levels of three genes (MMP2, TIMP2, and TGFB2), all known to participate in extracellular matrix organization, at five regions of the cornea and sclera in chickens developing high myopia and astigmatism induced by form deprivation. Our results showed that, compared to normal chicks, the highly myopic-astigmatic chicks had significantly astigmatic cornea, deeper anterior chamber, longer axial length, and higher expressions of all three genes in the superior sclera. These results imply that local molecular mechanism may manipulate the eye’s structural remodeling across the globe during refractive eye growth.
Abstract: RAF near point rule (RNPR) is a routinely used instrument in ophthalmology and optometry practice as well as for research purposes to measure the near point of convergence (NPC). The measurement of NPC is an important criterion for diagnosis and management of convergence insufficiency. The RNPR forms an important tool for ophthalmic clinicians however, only a very little is understood about it. This article tries to describe and review the designs, measurement techniques, merits and demerits of the RNPR and establish the need for its modification. It recommends that clinicians and researchers consider these findings while measuring NPC with the RNPR.
Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.