Background and Objective: Corneal neurotization is a novel surgical technique used to restore corneal sensation in patients with neurotrophic keratopathy. Neurotrophic keratopathy is a disorder characterized by dysfunction of the ophthalmic division of the trigeminal nerve, which provides sensory innervation to the cornea. Without sensation, the cornea is at risk of infection, ulceration, perforation, and ultimately, vision loss. Corneal neurotization has emerged as an innovative technique to reinnervate anesthetized corneas by transferring a healthy donor nerve to the affected eye around the corneoscleral limbus. As the field of corneal neurotization rapidly grows, there is a need to synthesize the existing body of literature on corneal neurotization and identify important areas for further research. In this review, we will discuss neurotrophic keratopathy and its current management strategies, followed by an overview of corneal neurotization techniques, outcomes, surgical considerations, and future directions. Methods: PubMed and Google Scholar searches were conducted to retrieve and analyze relevant original papers and reviews on neurotrophic keratopathy and corneal neurotization up until April 2022.Key Content and Findings: Currently, numerous techniques for corneal neurotization exist, including direct nerve transfers, as well as indirect neurotization via interposition nerve grafts. So far, corneal neurotization has been shown to be highly successful in restoring corneal sensation, improving visual acuity,and improving corneal epithelial health. To date, there have been no significant differences in outcomes between direct versus indirect neurotization techniques, different donor nerves, or autologous versus allogeneic interposition grafts. However, there is some evidence that corneal neurotization procedures may be more successful in pediatric patients.Conclusions: Corneal neurotization shows great promise in treating neurotrophic corneas and represents the first management option to date that addresses the underlying pathophysiological mechanism of neurotrophic keratopathy by restoring corneal sensation. As the use of corneal neurotization continues to broaden, additional studies will become important to compare techniques in a systematic manner, with larger sample sizes, as well as standardized outcome measures and follow-up time.
The purpose of this review is to provide a comprehensive and updated overview of the clinical features, imaging modalities, differential diagnosis, diagnostic criteria, and treatment options for Vogt-Koyanagi-Harada (VKH) syndrome, a rare progressive inflammatory condition characterized by bilateral granulomatous panuveitis and systemic manifestations. While the clinical features and disease course of VKH syndrome are well-characterized in the literature, its diagnosis is challenging due to a broad differential that include infectious and noninfectious causes of uveitis and rare inflammatory conditions, as well as a lack of a single diagnostic finding on exam, laboratory testing, or imaging. The evolution of the diagnostic criteria for VKH syndrome reflects the growing understanding of the disease by the ophthalmic community and advancement of imaging technology. Findings on enhanced depth imaging (EDI) optical coherence tomography (OCT) and indocyanine green angiography (ICGA) help detect subtle inflammation of the choroid and were incorporated into new diagnostic criteria developed in the last few years. There is limited research on the treatment for acute VKH, but results of studies to date support the early initiation of immunomodulatory therapy (IMT) due to a high recurrence rate and progression to chronic disease in patients treated with monotherapy with high-dose systemic corticosteroids. This review will provide an in-depth summary of recent literature on advanced imaging modality and IMT to guide clinicians in their management of patients with VKH syndrome.
Background: A variety of experimental animal models are used in basic ophthalmological research to elucidate physiological mechanisms of vision and disease pathogenesis. The choice of animal model is based on the measurability of specific parameters or structures, the applicability of clinical measurement technologies, and the similarity to human eye function. Studies of eye pathology usually compare optical parameters between a healthy and altered state, so accurate baseline assessments are critical, but few reports have comprehensively examined the normal anatomical structures and physiological functions in these models.Methods: Three cynomolgus monkeys, six New Zealand rabbits, ten Sprague Dawley (SD) rats, and BALB/c mice were examined by fundus photography (FP), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT).Results: Most retinal structures of cynomolgus monkey were anatomically similar to the corresponding human structures as revealed by FP, FFA, and OCT. New Zealand rabbits have large eyeballs, but they have large optic disc and myelinated retinal nerve fibers in their retinas, and the growth pattern of retinal vessels were also different to the human retinas. Unlike monkeys and rabbits, the retinal vessels of SD rats and BALB/c mice were widely distributed and clear. The OCT performance of them were similar with human beings except the macular.Conclusions: Monkey is a good model to study changes in retinal structure associated with fundus disease, rabbits are not suitable for studies on retinal vessel diseases and optic nerve diseases, and rats and mice are good models for retinal vascular diseases. These measures will help guide the choice of model and measurement technology and reduce the number of experimental animals required.
The prevalence of diabetic retinopathy (DR) continues to increase in pregnant females; these individuals are also at a higher risk of disease progression. The lack of evidence regarding the safety and efficacy of current treatment options in pregnancy makes disease management particularly challenging.All pregnant women with diabetes should have a prenatal DR screening, as well as receive counseling regarding the progression and management of DR during pregnancy. Optimal blood glucose and blood pressure control should be encouraged. For patients with proliferative diabetic retinopathy (PDR) in the absence of visually significant diabetic macular edema (DME), panretinal photocoagulation (PRP) remains a safe and effective treatment option. Visually significant DME can be treated with focal laser if areas of focal leakage are identified in the macula on fluorescein angiogram, intravitreal steroids or anti-vascular endothelial growth factor (VEGF) agents, The theoretical risk of anti-VEGF agents to the fetus should be considered and the patients should be extensively counselled regarding the risks and benefits of initiating anti-VEGF therapy before initiating treatment. When the decision is made to treat with anti-VEGF agents, Ranibizumab should be the agent of choice. In conclusion, ophthalmologists should make treatment decisions in pregnant patients with DR on a case-by-case basis taking into consideration disease severity, risk of permanent threat to vision, gestational age, and patient preferences.
Background and Objective: Nearly 30 years have passed since limbal stem cell deficiency (LSCD) was first identified by pioneers and given clinical attention. LSCD remains a difficult disease to treat. It can potentially lead to blinding. At present, understanding of limbal stem cells (LSCs) has deepened and various treatment options for LSCD have been devised. The objective of this review is to summarize basic knowledge of LSCD and current treatment strategies.Methods: PubMed search was performed to find studies published in English on LSCs and LSCD including original reports and reviews. Literatures published from 1989 to 2022 were reviewed.
Key Content and Findings: LSCs are enigmatic stem cells for which no specific marker has been discovered yet. Although LSCD is not difficult to diagnose, it is still challenging to treat. An important advancement in the treatment of LSCD is the provision of guidelines for selecting systematic surgical treatment according to the patient’s condition. It is also encouraging that stem cell technologies are being actively investigated for their potential usefulness in the treatment of LSCD.Conclusions: Although various treatment options for LSCD have been developed, it should be kept in mind that the best chance of treatment for LSCD is in the early stage of the disease. Every effort should be made to preserve as many LSCs as possible in the early treatment of LSCD.
Background: Necrotising fasciitis (NF) is a rare but severe necrotising infection of the subcutaneous tissues. We report a case of periocular NF associated with a concurrent COVID-19 infection and explore potential mechanisms of pathogenesis of COVID-19 infection and necrotising superinfections.
Case Description: A 33-year-old previously healthy female presented with right-sided progressive periocular swelling, erythema, pain and fever, two days after sustaining a laceration to the right superolateral brow from a clenched fist. She had a concurrent COVID-19 infection, detected on nasopharyngeal polymerase chain reaction swab thirteen days prior to presentation and again at presentation. She did not have an oxygen requirement. There was a large bulbous collection of the right upper lid with fluctuance and overlying erythema, and a communicating sinus drained frank pus from the superolateral brow. Pre-operative T2-weighted MRI demonstrated fascial hyperintensity involving the pre-septal tissues and extending to the anterior temporal fossa. She was commenced on intravenous meropenem, clindamycin and vancomycin, and underwent early surgical debridement. Initial debridement demonstrated right upper lid necrosis involving the dermal and pre-septal layers, including the orbicularis, but sparing the tarsus. Streptococcus pyogenes was isolated, and she was continued on a prolonged course of intravenous antibiotic. Periocular defects were repaired with a right-sided brow adipo-fascial flap based on the supratrochlear artery, browpexy and dual full thickness skin grafts on the right upper lid and flap.
Conclusions: NF is an acute fulminant infection rarely affecting the periocular tissues. This represents a unique case of periocular NF associated with a concurrent COVID-19 infection.
Backgrounds: To assess changes in anterior segment biometry during accommodation using a swept source anterior segment optical coherence tomography (SS-OCT).
Methods: One hundred-forty participants were consecutively recruited in the current study. Each participant underwent SS-OCT scanning at 0 and ?3 diopter (D) accommodative stress after refractive compensation, and ocular parameters including anterior chamber depth (ACD), anterior and posterior lens curvature, lens thickness (LT) and lens diameter were recorded. Anterior segment length (ASL) was defined as ACD plus LT. Lens central point (LCP) was defined as ACD plus half of the LT. The accommodative response was calculated as changes in total optical power during accommodation.
Results: Compared to non-accommodative status, ACD (2.952±0.402 vs. 2.904±0.382 mm, P<0.001), anterior (10.771±1.801 vs. 10.086±1.571 mm, P<0.001) and posterior lens curvature (5.894±0.435 vs. 5.767±0.420 mm, P<0.001), lens diameter (9.829±0.338 vs. 9.695±0.358 mm, P<0.001) and LCP (4.925±0.274 vs. 4.900±0.259 mm, P=0.010) tended to decreased and LT thickened (9.829±0.338 vs. 9.695±0.358 mm, P<0.001), while ASL (6.903±0.279 vs. 6.898±0.268 mm, P=0.568) did not change significantly during accommodation. Younger age (β=0.029, 95% CI: 0.020 to 0.038, P<0.001) and larger anterior lens curvature (β=?0.071, 95% CI: ?0.138 to ?0.003, P=0.040) were associated with accommodation induced greater steeping amplitude of anterior lens curvature. The optical eye power at 0 and ?3 D accommodative stress was 62.486±2.284 and 63.274±2.290 D, respectively (P<0.001). Age was an independent factor of accommodative response (β=?0.027, 95% CI: ?0.038 to ?0.016, P<0.001).
Conclusions: During ?3 D accommodative stress, the anterior and posterior lens curvature steepened, followed by thickened LT, fronted LCP and shallowed ACD. The accommodative response of ?3 D stimulus is age-dependent.
Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Conjunctival flaps have previously proven to be effective in preserving the globe for individuals with severe ocular surface disease. Infectious keratitis, neurotrophic keratitis, nontraumatic corneal melts, descemetoceles, perforations, and corneal burns are all indications for this procedure. The flaps promote nutrition, metabolism, structure, and vascularity, as well as reduce pain, irritation, inflammation, and infection. Furthermore, patients avoid the emotional and psychological repercussions of enucleation or evisceration, while requiring fewer postoperative medications and office visits. Currently, fewer flaps are performed due to the emergence of additional therapeutic techniques, such as serum tears, bandage lenses, corneal grafting, Oxervate, amniotic membrane, and umbilical cord grafting. However, despite newer conservative medical methods, conjunctival flaps have been demonstrated to be useful and advantageous. Moreover, future technologies and approaches for globe preservation and sight restoration after prior conjunctival flaps are anticipated. Herein, we review the history, advantages, and disadvantages of various surgical techniques: Gundersen’s bipedicle flap, partial limbal advancement flap, selective pedunculated conjunctival flap with or without Tenon’s capsule, and Mekonnen’s modified inferior palpebral-bulbar conjunctival flap. The surgical pearls and recommendations offered by the innovators are also reviewed, including restrictions and potential complications. Procedures for visual rehabilitation in selective cases after conjunctival flap are reviewed as well.