您的位置: 首页 > 2024年4月 第39卷 第4期 > 文字全文
2023年7月 第38卷 第7期11
目录

近 20 年热休克蛋白在眼科中的研究进展及趋势:文献计量学研究

Advances and trends of heat shock proteins in ophthalmology in the past 20 years

来源期刊: 眼科学报 | 2024年4月 第39卷 第4期 199-209 发布时间: 收稿时间:2024/7/22 8:40:50 阅读量:827
作者:
关键词:
热休克蛋白眼科文献计量学热点趋势
heat shock protein ophthalmology bibliometrics hot spots trends
DOI:
10.12419/24051602.
收稿时间:
2024-03-01 
修订日期:
2024-04-08 
接收日期:
2024-04-15 
目的:探讨2003—2023年热休克蛋白(heat shock proteins,HSP)在眼科领域中的研究进展及前沿趋势。法:利用Web of Science数据库检索2003年1月—2023年12月26日HSP在眼科领域的文献,采用文献计量学方法、应用VOSviewer及CiteSpaces软件对发文量、国家、机构、期刊、作者、关键词以及学科领域等数据进行定量分析及可视化。结果:共纳入1 079篇HSP在眼科领域的相关文献,总体发文量处于波动状态。美国(=394)是发文量最多的国家,Investigative Ophthalmology & Visual Science(=80)是发表相关文献最多的期刊。研究热点主要分为三部分,分别为青光眼发病机制、白内障发病机制及HSP在基因层面的眼科疾病机制研究。研究的前沿主题是青光眼、胆固醇、分子伴侣。生物化学与分子生物学、多学科材料科学和细胞生物学学科领域具有最高的中介中心性值,分别为0.60、0.28和0.26。多学科化学(爆发年份:2017—2023年;强度为6.3)是该领域研究前沿涉及的学科。结论:HSP在眼科领域的研究重点是揭示疾病的遗传背景,探究其在青光眼及白内障中的分子机制以及治疗应用。该领域分子机制研究的进展有赖于多学科的合作。
Objective: To investigate the advances and trends of heat shock proteins (HSP) in ophthalmology published from  2003 to 2023. Methods: The Web of Science database was used to retrieve the literature on heat shock proteins in ophthalmology published from January 1, 2003 to December 26, 2023. Bibliometric methods and VOSviewer and CiteSpaces software were used to analyze and visualize data, including publication count, countries, organizations, journals, authors, keywords and subject categories. Results: A total of 1079 publications related to HSP in ophthalmology were included, and the overall number of publications was fluctuating. The United States (=394) was the leading contributor among countries. Investigative Ophthalmology & Visual Science (=80) was the journal with the largest number of publications. The pathogenesis of glaucoma, the pathogenesis of cataract and the mechanism of ophthalmic diseases at the genetic level of HSP were identified as the research hotspots. Glaucoma, cholesterol, and molecular chaperones were identified as frontier research topics. Biochemistry & molecular biology, multidisciplinary materials science, and cell biology have the highest betweenness centrality values of 0.60, 0.28, and 0.26, respectively. Multidisciplinary chemistry (burst years: 2017 to 2023; strength = 6.3) was a subject involved in the research frontier of this field. Conclusion: Research on heat shock proteins in ophthalmology mainly focuses on revealing the genetic background of the diseases and exploring the molecular mechanisms and therapeutic applications in glaucoma and cataracts. The advance in the study on molecular mechanisms in this field depends on multidisciplinary collaboration.

文章亮点

1. 关键发现

近 20 年热休克蛋白 (heat shock proteins,HSP) 在眼科中的研究热点分别为青光眼发病机制、白内障发病机制及 HSP 在基因层面的眼科疾病机制研究;前沿主题是青光眼、胆固醇、分子伴侣;多学科化学是研究前沿涉及的学科。

2. 已知与发现

HSP 在眼部组织中的表达,参与了白内障、青光眼和年龄相关性黄斑病变等多种眼病的发生和发展。目前,尚缺乏HSP 在眼科领域内的研究热点及发展趋势的分析及总结。该研究总结了近 20 年 HSP 在眼科中的研究热点及前沿趋势。

3. 意义与改变

该研究对近 20 年 HSP 在眼科领域的文章前沿热点和研究趋势进行回顾和总结,有望为相关研究人员提供参考依据,推进研究的深入发展。

       据报道,2020年全球有超过11亿人存在视力损害或失明,到2050年预计存在视力损害或失明的人数将达到17亿[1]。视力损害和失明对个体就业和生活质量的影响,加之有特殊护理的需求,给全球带来了沉重的经济负担和社会负担[2]。眼科学的发展对预防和治疗眼科疾病至关重要,相关领域的基础研究及临床研究都在广泛地开展。
       热休克蛋白(heat shock protein,HSP)在眼部疾病中的作用受到了广泛关注。HSP属于应激蛋白超家族,是细胞中分子伴侣系统的一部分,参与了蛋白质折叠、运输和蛋白质复合物组装或拆卸等过程[3]。HSP在哺乳动物胚胎期、成年期和衰老期的晶状体、角膜和视网膜中均有表达[4],发挥细胞保护、抗氧化和抗凋亡作用[5-7]。HSP参与了白内障[8-9]、青光眼[10-11]和年龄相关性黄斑病变[12]等多种眼病的发生和发展。随着对HSP研究的不断深入,一个复杂的知识网络逐渐形成。然而,仅通过传统的分析方法难以准确把握研究热点。文献计量学是利用统计学和数学方法对文献进行定量分析的一门学科[13],是评价研究活动总体趋势及获取前沿热点的有效方法。目前,尚缺乏HSP在眼科领域内的研究热点及发展趋势的分析及总结。因此,本研究借助文献计量学分析方法,对2003—2023年全球HSP在眼科领域的文章进行定量分析和可视化,对该领域前沿热点和研究趋势进行回顾,以期为相关研究人员提供参考依据。

1 资料与方法

1.1 数据来源及提取

       为了筛选与眼科中HSP相关的最新研究,本研究采用Web of Science核心合集数据库进行检索,检索时间范围为2003年1月1日至2023年12月26日,检索式为(TS=(eye) OR TS=(ocular) OR TS=(ophthal*) OR TS=(oculo*)) AND (TS=(HSPs) OR TS=(Heat Shock Protein)OR TS=(HSP) OR TS=(HSP*)),仅纳入Article和Review Article。详细的数据筛选方法见图1。

1 文献筛选的流程图

Figure 1  Flow chart of the study selection process

注:WoSCCWeb of Science核心合集。

Notes: WoSCC: Web of Science Core Collection.

1.2 数据分析及可视化

       应用Microsoft Excel 2021、VOSviewer 1.6.19及CiteSpace 6.2.R6软件对发文量、期刊、研究机构、作者、国家、关键词和共现网络等进行提取和可视化分析。采用年度出版物量、年度引用量和年增长率评估HSP在眼科文献中的发表趋势。年增长率定义为当年出版物数量减去上年出版物数量除以上年出版物数量。负增长率赋值为0,表示没有增长[14]。国家、研究机构、期刊和作者的贡献均通过发文量来评估。应用GraphPad Prism 9.4.0绘制折线图及柱状图。运用VOSviewer 1.6.19进行作者合作网络及关键词共现性分析,将相同的作者或相同的关键词进行合并,剔除“Heat Shock Protein”“HSP”“HSPs”“eye”和“ocular”等与检索词相同或相近的关键词。作者发文量越多或关键词出现频率越高则节点越大,节点之间关联越紧密则连线越粗。应用CiteSpace 6.2.R6进行文献共被引分析、学科领域共现分析及绘制学科领域突现图。

2 结果

2.1 研究领域的总体特点

       2003年1月1日—2023年12月26日,共有1 079篇关于HSP在眼科领域中的原创性研究及综述文章(图2A),总体发文量处于波动状态。出版文章最多的年份是2016年(n=66,6%),出版文章最少的年份是2005年(n=33,3%)。期间所有出版物共被引用了33 085次,平均每篇文章被引用了30.66次。出版文章每年的引用量逐年增加,在2022年达到高峰(n=3 029)。研究期间,每年出版文章数量呈非连续性增长,在2015年增长速度最快。
       全球共72个国家、1431个机构参与HSP在眼科中的研究文章发表。该领域发文量位列前三的国家分别是美国(n=394)、中国(n=164)和德国(n=107)(图2B)。在机构贡献方面,发文量排名前三的机构分别是美国国家眼科研究所(National Eye Institute,NEI; n=19), 哈佛大学(Harvard Univ; n=18),加利福尼亚大学(Univ Calif Los Angeles; n=17)(图2C)。在期刊方面,发文量排名前三的期刊分别是Investigative Ophthalmology & Visual Science(Invest Ophthalmol Vis Sci; n=80)、PLoS one(n=49)、Molecular Vision(Mol Vis; n=40)(图2D)。

2 20HSP在眼科领域的研究概况

Figure 2 Profile of research on heat shock protein in ophthalmology in the past 20 years

注:(A)上图:年度发文量及被引用趋势分析;下图:年发文增长率;(B)排名前10的国家;(C)排名前11的机构;(D)排名前11的期刊。

Notes:(A) Top graph: analysis of annual publications and citations trends. Bottom graph: annual growth rate of publications; (B) Top 10 countries; C) Top 11 organizations; (D) Top 11 journals. 

       共有5 426名作者参与了HSP在眼科中的研究文章的发表,Usha P. Andley(n=6)、Ashis Biswas(n=5)、Xiukun Cui(n=5)和Sudipa Saha(n=5)是作为第一作者发表文章最多的前四名作者(图3A)。同时,Stephanie C. Joachim(n=16),David Wan-Cheng Li(n=14)和Franz H. Grus(n=13)是作为共同作者发表文章最多的前三名作者(图3B)。在设置最低发文量为4篇文章后,作者合作网络共出现29个聚类,共包括71名作者(图3C)。按合作作者数量排前三的聚类分别如下:以Stephanie C. Joachim为核心的 8名作者(总连接强度 = 33.00)、以Ashis Biswas为核心的7名作者(总连接强度 = 8.00)、以Xiukun Cui为核心的6名作者(总连接强度 = 15.00)。Stephanie C. Joachim是最大的作者合作网络中的核心。

图3 HSP的眼科领域发文最活跃的作者
Figure 3 The most active authors in the field of heat shock protein in ophthalmology
(A) 前10名第一作者;(B) 前11名共同作者;(C) 作者合作网络。
(A) Top 10 first authors; (B) Top 11 co-authors; (C) Author collaboration network.

2.2 基于关键词的研究热点分析

       HSP在眼科领域的研究文章共有6 055个关键词。将关键词的最低出现频率设定为15次后,确定了82个高频关键词,这些关键词形成了3个聚类(图4A,表1),红色聚类主要与青光眼发病机制相关,如细胞凋亡、氧化应激等;蓝色聚类主要与白内障发病机制相关,如分子伴侣、晶体蛋白、聚合等;绿色聚类主要概括HSP在基因层面的眼科疾病机制研究,如基因表达、基因变异等。
       文章整理了研究热点的演变方向(图4B),关键词圆圈颜色越靠近紫色表示出现时间越远,越靠近黄色表示出现时间越近。研究早期主要集中在晶体蛋白和视网膜方面,中期主要集中在白内障、基因和蛋白质表达方面,当下较新的研究热点主要集中在青光眼、视神经、基因变异、抗体等方面。
图4 HSP的眼科领域研究的关键词共现分析图
Figure 4 Map of keywords co-occurrence in the field of heat shock protein in ophthalmology

表1 关键词聚类分析中3大聚类排名前10的关键词 
Table 1 The top 10 keywords in the 3 clusters in co-occurrence analysis of keywords 

Cluster 1 (Red)

Occurrence

Cluster 2 (Blue)

Occurrence

Cluster 3 (Green)

Occurrence

model

169

molecular chaperone

160

expression

188

glaucoma

81

a-crystallin

133

gene

142

apoptosis

79

lens

118

protein

70

oxidative stress

78

b-crystallin

108

heat-shock-protein-70

65

cells

52

alpha-b-crystallin

102

mutation

64

retinal ganglion-cells

51

cataract

78

stress

51

retina

43

chaperone-like activity

71

identification

48

activation

38

crystallin

48

disease

41

intraocular-pressure

35

aggregation

41

heat-shock-protein-90

38

macular degeneration

33

quaternary structure

35

mechanisms

35

(A) 关键词网络图;(B) 关键词的演变趋势。

(A) Keywords network diagram; (B) Keywords dynamics and trends.

2.3 基于引用文献的研究趋势分析

       该领域的文章引用的参考文献形成了19个聚类,只展示文章数排名前12的聚类(图5)。按时间顺序,最早的聚类是“聚合”(#1;85篇文章;平均形成年份为2001年),其次是“behcets”聚类(#7;30篇文章;平均形成年份为 2002年),“眼内压”聚类(#6;37篇文章;平均形成年份为 2003年),“突变”聚类(#2;73篇文章;平均形成年份为 2004年),“X线衍射”聚类(#10;23篇文章;平均形成年份为 2006年),“细胞凋亡”聚类(#3;65篇文章;平均形成年份为 2007年),“晶状体蛋白”聚类(#0; 96篇文章;平均形成年份为2011年),“泪膜”聚类(#8;29篇文章;平均形成年份为2014年);“分子伴侣”聚类(#4;55篇文章;平均形成年份为 2016年),“蛋白质”聚类(#11; 23篇文章;平均形成年份为 2017年);“青光眼”聚类(#5;42篇文章;平均形成年份为2017年);“胆固醇”聚类(#9;13篇文章;平均形成年份为2019年)。根据引用的持续时间,研究前沿方向为 “青光眼”(2014—2022年),“分子伴侣”(2012—2020年)和“胆固醇”(2016—2021年)。
图5 HSP的眼科领域研究的引用文献时间线图
Figure 5 Timeline view of cited references in the field of heat shock protein in ophthalmology
引用频率越高则节点越大。每个节点根据首次引用的时间定位于时间轴上。按平均形成年份的顺序,共被引聚类排序为 #0至 #11。使用引用文献中的术语对聚类进行研究主题分类。
Citations frequency increases with node size. Each node is located in the timeline according to the moment of first citation. In order of mean formation year, co-citation clusters are numbered #0 to #11. The clusters are classified into research topic trends using terms from the citing articles.

2.4 研究学科领域分析

       HSP在眼科领域研究发文量排前三名学科类别是眼科学(n = 258)、生物化学与分子生物学(n = 250)和细胞生物学(n = 93)(表2)。生物化学与分子生物学、多学科材料科学及细胞生物学三个学科领域具有最高的中介中心性值,分别为0.60、0.28和0.26(表3)。持续到2023年的学科为多学科化学(爆发年份:2017—2023年;强度为 6.3;图6B),是该领域研究前沿涉及的学科类别。

图6 HSP的眼科领域的研究学科分布
Figure 6 Distribution of subject categories in the field of heat shock protein in ophthalmology
(A) 学科类别分布。图中显示了32个协作学科和12个带有紫色外环的桥接学科。(B) 被引频次最高的9个学科。红色线段代表引文爆发的时期。
(A) Subject categories distribution. 32 collaborative subject categories and 12 bridge subject categories represented by nodes with purple outside rings are shown. (B) Top 9 subject categories with the strongest citation bursts. The red line segment represents the period of the citation burst.

表2 近20年HSP在眼科领域发文排名前10的学科
Table 2 Top 10 subject categories of heat shock proteins in ophthalmology in the past 20 years

Subject category

Occurrence

Centrality

Ophthalmology

258

0.03

Biochemistry & Molecular Biology

250

0.6

Cell Biology

93

0.26

Multidisciplinary Sciences

71

0

Neurosciences

69

0.17

Genetics & Heredity

69

0.1

Biophysics

47

0.09

Medicine, Research & Experimental

45

0.11

Oncology

39

0.09

Immunology

38

0.14

 

表 3 近 20 年HSP在眼科领域研究的桥接学科
Table 3 Bridging subject categories of heat shock proteins in ophthalmology in the past 20 years

Subject category

Centrality

Occurrence

Biochemistry & Molecular Biology

0.6

250

Materials Science, Multidisciplinary

0.28

9

Cell Biology

0.26

93

Biochemical Research Methods

0.18

14

Engineering, Electrical & Electronic

0.18

12

Neurosciences

0.17

69

Nanoscience & Nanotechnology

0.16

6

Immunology

0.14

38

Medicine, Research & Experimental

0.11

45

 

3 讨论

       本研究基于Web of Science数据库对近20年HSP在眼科领域相关研究进行了全面检索和分析。HSP在眼科领域中的研究的年度发文量处于波动状态,在2015年增长速度最快,2016年发文量最高。全球共72个国家、1 431个机构及5 426名作者参与相关研究文章的发表,其中美国是发文量最多的国家,其发文量约占总发文量的1/3,中国的发文量仅次于美国,约占总发文量的1/6。美国国家眼科研究所是发文量最多的机构,其次是哈佛大学和加利福尼亚大学。Investigative Ophthalmology & Visual Science是发表相关文献最多的期刊。 在作者合作网络分析中,德国鸿鲁尔大学Stephanie C. Joachim教授是最大的作者合作网络中的核心,同时也是作为共同作者发表文章最多的作者,是该领域最活跃的贡献者。
       通过关键词聚类分析,研究热点主要分为三部分,分别是与青光眼发病机制相关、与白内障的发生机制相关及HSP在基因层面的眼科疾病机制研究。基于高质量的研究会被广泛引用的事实,可以通过引用的文献来分析所选文章中的主题信息[15],而通过时间线图可以清晰地描绘该领域的前沿主题。通过文献共被引分析,提示该领域研究前沿方向是青光眼、分子伴侣及胆固醇。
       青光眼是该研究领域的研究热点和前沿,相关研究主要集中在阐明HSP参与青光眼发生的分子机制以及HSP介导的神经保护对青光眼的治疗作用。青光眼的特征是视神经的特征性损伤和视网膜神经节细胞变性导致视力逐渐丧失。青光眼患者血清中HSP27及α-晶状体蛋白的自身抗体增加[16]。通过 HSP27和 HSP60免疫Lewis大鼠1~4个月,大鼠眼内出现视网膜神经节细胞变性和轴突损失[17]。HSP由于其伴侣活性和抗凋亡活性在中枢神经系统中表现出神经保护特性[18-19],而HSP在青光眼中神经保护作用也是研究的热点课题[20]。在青光眼动物模型中,诱导HSP70和小HSP(α-晶状体蛋白)表达可提高视网膜神经节细胞的存活率[21]。在慢性眼高压大鼠模型中,腹腔注射硫酸锌诱导HSP72 表达可减少视网膜神经节细胞的死亡,可能是通过抑制应激活化蛋白激酶(stress-activated MAP kinase,SAPK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK) 通路起作用[22]。近年来,有学者提出青光眼是以T细胞介导为主的神经退行性自身免疫性疾病,HSP是T细胞反应的靶抗原[23-25]。在压力依赖性青光眼动物模型中,视网膜中出现自身反应性T细胞的浸润,并且HSP被确定为T细胞反应的靶抗原[26]。免疫调节包括靶向HSP作为青光眼的潜在治疗策略,值得持续关注。
        对白内障的研究主要集中在晶状体蛋白的功能及其对白内障形成的影响。α-晶状体蛋白是小HSP家族的成员[27],起分子伴侣的作用[28]。晶状体蛋白通过短程相互作用以维持晶状体透明,而衰老或者疾病损伤将会导致晶体蛋白错误折叠、聚集成不溶性淀粉样物质,从而形成白内障[29]。α-晶状体蛋白的分子伴侣活性对防止应激诱导的晶状体蛋白质聚集至关重要[30–32],其伴侣活性可能会受突变或翻译后修饰影响,从而导致蛋白质聚集和白内障[33]。调节α-晶状体蛋白伴侣活性可以延缓白内障的进展[34]。此外,近期研究表明,HSP90β在人类白内障晶状体和老年小鼠晶状体中表达下调,HSP90β通过负向调节带电多泡体蛋白4B(charged multivesicular body protein 4B,CHMP4B)和 p53-Bak/Bim 通路抑制白内障发生[8]
        胆固醇与白内障的联系近期受到广泛关注。胆固醇是晶状体纤维细胞质膜的主要成分之一[35],α-晶状体蛋白与晶状体纤维细胞的细胞膜结合导致白内障[36-37],而胆固醇可抑制此结合过程,增加晶状体的透明性并预防白内障的形成[38]
        HSP在基因层面的眼科疾病机制研究主要包括基因表达及基因突变。HSP的基因表达贯穿于整个眼科疾病的研究中,而编码HSP的基因发生突变将会导致某些眼科疾病的发生。先天性白内障是导致儿童失明的主要原因,而遗传性白内障则是导致先天性白内障的主要原因[39]。遗传性先天性白内障与特定基因的突变有关,其中大约一半是由晶状体蛋白基因突变引起的[40]。α-晶状体蛋白包含两个亚基(αA-晶状体蛋白和αB-晶状体蛋白),分别由CRYAA和CRYAB编码[30-31]。迄今为止,CRYAA中57 种致病变异可导致常染色体显性或常染色体隐性白内障[41]。如αA-晶状体蛋白中的R54C突变会导致先天性白内障[42]。据报道,CRYAB中有22个致病变异与染色体显性或常染色体隐性白内障有关[41]。如R12C、P20R、R69C、R120G、G154S、R157H或A171T的突变与白内障和心肌病发生相关[43-47]。R12C、R12C/P20R 和 R12C/R69突变明显增强了αB-晶状体蛋白形成淀粉样原纤维的倾向,并降低了其分子伴侣样活性,且双突变对蛋白结构和功能的改变具有累加效应[48]。准确了解α-晶状体蛋白突变的致病性非常重要,可能有助于我们提出科学的解决方案来预防或延缓白内障等相关疾病[49-50]
       本研究纳入的文章涉及的前6个学科分别为眼科学、生物化学与分子生物学、细胞生物学、神经科学、多学科科学及基因遗传学,表明这一研究领域不仅限于眼科的研究,而是多学科合作的研究,多学科合作有助于深入挖掘HSP参与眼病发生的分子机制。多学科化学是爆发时间持续到2023年的学科,这表明人们对HSP在眼科中的分子机制的多学科应用兴趣有所增加,并促进了学科合作。
        本研究存在一定局限性。首先,由于CiteSpace和VOSviewer的限制,融合不同数据库之间的数据存在困难,我们仅使用了 Web of Science 核心合集,而Web of Science核心合集作为权威数据库,已经包含了较全面的研究信息。此外,在我们的研究中,仅考虑了出版物的数量,但没有考虑其质量,有必要进一步改进研究以解决质量评估问题。
        综上所述,HSP在眼科领域的研究热点和前沿主要集中于揭示疾病的遗传背景,探究其在青光眼及白内障发生的分子机制以及治疗应用。该领域分子机制研究的进展有赖于多学科的合作。

利益冲突

    所有作者均声明不存在利益冲突。

开放获取声明

    本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
1、2019 Blindness and Vision Impairment Collaborators GBD, Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e130-e143. DOI: 10.1016/S2214- 109X(20)30425-3.2019 Blindness and Vision Impairment Collaborators GBD, Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e130-e143. DOI: 10.1016/S2214- 109X(20)30425-3.
2、Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, metaanalysis, and modeling[ J]. Ophthalmology, 2019, 126(3): 338-346. DOI: 10.1016/j.ophtha.2018.10.029.Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, metaanalysis, and modeling[ J]. Ophthalmology, 2019, 126(3): 338-346. DOI: 10.1016/j.ophtha.2018.10.029.
3、Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control[ J]. Cell, 2006, 125(3): 443-451. DOI: 10.1016/ j.cell.2006.04.014.Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control[ J]. Cell, 2006, 125(3): 443-451. DOI: 10.1016/ j.cell.2006.04.014.
4、Arrigo AP, Simon S. Expression and functions of heat shock proteins in the normal and pathological mammalian eye[ J]. Curr Mol Med, 2010, 10(9): 776-793. DOI: 10.2174/156652410793937804.Arrigo AP, Simon S. Expression and functions of heat shock proteins in the normal and pathological mammalian eye[ J]. Curr Mol Med, 2010, 10(9): 776-793. DOI: 10.2174/156652410793937804.
5、Zininga T, R amatsui L, Shonhai A . Heat shock proteins as immunomodulants[ J]. Molecules, 2018, 23(11): 2846. DOI: 10.3390/ molecules23112846.Zininga T, R amatsui L, Shonhai A . Heat shock proteins as immunomodulants[ J]. Molecules, 2018, 23(11): 2846. DOI: 10.3390/ molecules23112846.
6、Creagh EM, Carmody RJ, Cotter TG. Heat shock protein 70 inhibits caspase-dependent and-independent apoptosis in Jurkat T cells[ J]. Exp Cell Res, 2000, 257(1): 58-66. DOI: 10.1006/excr.2000.4856.Creagh EM, Carmody RJ, Cotter TG. Heat shock protein 70 inhibits caspase-dependent and-independent apoptosis in Jurkat T cells[ J]. Exp Cell Res, 2000, 257(1): 58-66. DOI: 10.1006/excr.2000.4856.
7、Shan R, Liu N, Yan Y, et al. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27[ J]. Pharmacol Res, 2021, 166: 105169. DOI: 10.1016/j.phrs.2020.105169.Shan R, Liu N, Yan Y, et al. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27[ J]. Pharmacol Res, 2021, 166: 105169. DOI: 10.1016/j.phrs.2020.105169.
8、Fu JL, Zheng SY, Wang Y, et al. HSP90β prevents aging-related cataract formation through regulation of the charged multivesicular body protein (CHMP4B) and p53[ J]. Proc Natl Acad Sci U S A, 2023, 120(31): e2221522120. DOI: 10.1073/pnas.2221522120.Fu JL, Zheng SY, Wang Y, et al. HSP90β prevents aging-related cataract formation through regulation of the charged multivesicular body protein (CHMP4B) and p53[ J]. Proc Natl Acad Sci U S A, 2023, 120(31): e2221522120. DOI: 10.1073/pnas.2221522120.
9、Cui X, Du C, Wan S, et al. Deficiency of heat shock factor 4 promotes lens epithelial cell senescence through upregulating p21cip1 expression[ J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11): 166233. DOI: 10.1016/j.bbadis.2021.166233.Cui X, Du C, Wan S, et al. Deficiency of heat shock factor 4 promotes lens epithelial cell senescence through upregulating p21cip1 expression[ J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11): 166233. DOI: 10.1016/j.bbadis.2021.166233.
10、Reinehr S, Safaei A, Grotegut P, et al. Heat shock protein upregulation supplemental to complex mRNA alterations in autoimmune glaucoma[ J]. Biomolecules, 2022, 12(10): 1538. DOI: 10.3390/ biom12101538.Reinehr S, Safaei A, Grotegut P, et al. Heat shock protein upregulation supplemental to complex mRNA alterations in autoimmune glaucoma[ J]. Biomolecules, 2022, 12(10): 1538. DOI: 10.3390/ biom12101538.
11、Tsai T, Grotegut P, Reinehr S, et al. Role of heat shock proteins in glaucoma[ J]. Int J Mol Sci, 2019, 20(20): 5160. DOI: 10.3390/ijms 20205160.Tsai T, Grotegut P, Reinehr S, et al. Role of heat shock proteins in glaucoma[ J]. Int J Mol Sci, 2019, 20(20): 5160. DOI: 10.3390/ijms 20205160.
12、Chen DD, Peng X, Wang Y, et al. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells[ J]. Aging, 2021, 13(17): 21547-21570. DOI: 10.18632/aging.203496.Chen DD, Peng X, Wang Y, et al. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells[ J]. Aging, 2021, 13(17): 21547-21570. DOI: 10.18632/aging.203496.
13、Miao YD, Quan W, Dong X, et al. A bibliometric analysis of ferroptosis, necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to 2022[ J]. Cell Death Discov, 2023, 9(1): 129. DOI: 10.1038/s41420- 023-01421-1.Miao YD, Quan W, Dong X, et al. A bibliometric analysis of ferroptosis, necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to 2022[ J]. Cell Death Discov, 2023, 9(1): 129. DOI: 10.1038/s41420- 023-01421-1.
14、Tan Y, Chen H, Gong S, et al. Evolution and trends of childhood cataract research in the past 10 years: a scientometric analysis[ J]. Heliyon, 2023, 9(6): e17590. DOI: 10.1016/j.heliyon.2023.e17590.Tan Y, Chen H, Gong S, et al. Evolution and trends of childhood cataract research in the past 10 years: a scientometric analysis[ J]. Heliyon, 2023, 9(6): e17590. DOI: 10.1016/j.heliyon.2023.e17590.
15、Ali NQ, Patel DV, Lockington D, et al. Citation analysis of keratoconus 1900-2013: the most influential publications, authors, institutions, and journals[ J]. Asia Pac J Ophthalmol, 2014, 3(2): 67-73. DOI: 10.1097/ APO.0b013e3182a4cf92.Ali NQ, Patel DV, Lockington D, et al. Citation analysis of keratoconus 1900-2013: the most influential publications, authors, institutions, and journals[ J]. Asia Pac J Ophthalmol, 2014, 3(2): 67-73. DOI: 10.1097/ APO.0b013e3182a4cf92.
16、Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma[ J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2277-2287.Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma[ J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2277-2287.
17、Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand[ J]. J Neurosci, 2008, 28(46): 12085- 12096. DOI: 10.1523/JNEUROSCI.3200-08.2008.Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand[ J]. J Neurosci, 2008, 28(46): 12085- 12096. DOI: 10.1523/JNEUROSCI.3200-08.2008.
18、Saidi LJ, Polydoro M, Kay KR, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes[ J]. J Alzheimers Dis, 2015, 44(3): 937-947. DOI: 10.3233/ JAD-142094.Saidi LJ, Polydoro M, Kay KR, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes[ J]. J Alzheimers Dis, 2015, 44(3): 937-947. DOI: 10.3233/ JAD-142094.
19、Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies[ J]. Acta Neuropathol Commun, 2013, 1(1): 79. DOI: 10.1186/2051-5960-1-79.Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies[ J]. Acta Neuropathol Commun, 2013, 1(1): 79. DOI: 10.1186/2051-5960-1-79.
20、Anders F, Liu A, Mann C, et al. The small heat shock protein α-crystallin B shows neuroprotective properties in a glaucoma animal model[ J]. Int J Mol Sci, 2017, 18(11): 2418. DOI: 10.3390/ijms 18112418.Anders F, Liu A, Mann C, et al. The small heat shock protein α-crystallin B shows neuroprotective properties in a glaucoma animal model[ J]. Int J Mol Sci, 2017, 18(11): 2418. DOI: 10.3390/ijms 18112418.
21、Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival[ J]. Prog Retin Eye Res, 2016, 52: 22-46. DOI: 10.1016/j.preteyeres.2016.03.001.Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival[ J]. Prog Retin Eye Res, 2016, 52: 22-46. DOI: 10.1016/j.preteyeres.2016.03.001.
22、Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J]. Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673- 5374.137595.Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J]. Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673- 5374.137595.
23、von Thun Und Hohenstein-Blaul N, Bell K , Pfeiffer N, et al. Autoimmune aspects in glaucoma[ J]. Eur J Pharmacol, 2016, 787: 105- 118. DOI: 10.1016/j.ejphar.2016.04.031.von Thun Und Hohenstein-Blaul N, Bell K , Pfeiffer N, et al. Autoimmune aspects in glaucoma[ J]. Eur J Pharmacol, 2016, 787: 105- 118. DOI: 10.1016/j.ejphar.2016.04.031.
24、Wakefield%20D%2C%20Wildner%20G.%20Is%20glaucoma%20an%20autoimmune%20disease%3F%5B%20J%5D.%20Clin%20%0ATransl%20Immunology%2C%202020%2C%209(10)%3A%20e1180.%20DOI%3A%2010.1002%2Fcti2.1180.Wakefield%20D%2C%20Wildner%20G.%20Is%20glaucoma%20an%20autoimmune%20disease%3F%5B%20J%5D.%20Clin%20%0ATransl%20Immunology%2C%202020%2C%209(10)%3A%20e1180.%20DOI%3A%2010.1002%2Fcti2.1180.
25、Geyer O, Levo Y. Glaucoma is an autoimmune disease[ J]. Autoimmun Rev, 2020, 19(6): 102535. DOI: 10.1016/j.autrev.2020.102535.Geyer O, Levo Y. Glaucoma is an autoimmune disease[ J]. Autoimmun Rev, 2020, 19(6): 102535. DOI: 10.1016/j.autrev.2020.102535.
26、Chen H, Cho KS, Khanh Vu THK , et al. Author Correction: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[ J]. Nat Commun, 2018, 9(1): 3914. DOI: 10.1038/s41467-018-06428-2.Chen H, Cho KS, Khanh Vu THK , et al. Author Correction: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[ J]. Nat Commun, 2018, 9(1): 3914. DOI: 10.1038/s41467-018-06428-2.
27、Ingolia TD, Craig EA. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin[ J]. Proc Natl Acad Sci USA, 1982, 79(7): 2360-2364. DOI: 10.1073/ pnas.79.7.2360.Ingolia TD, Craig EA. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin[ J]. Proc Natl Acad Sci USA, 1982, 79(7): 2360-2364. DOI: 10.1073/ pnas.79.7.2360.
28、Horwitz J. Alpha-crystallin can function as a molecular chaperone[ J]. Proc Natl Acad Sci USA, 1992, 89(21): 10449-10453. DOI: 10.1073/ pnas.89.21.10449.Horwitz J. Alpha-crystallin can function as a molecular chaperone[ J]. Proc Natl Acad Sci USA, 1992, 89(21): 10449-10453. DOI: 10.1073/ pnas.89.21.10449.
29、季敏, 管怀进. 白内障的分子病理改变[ J]. 眼科学报, 2021, 36(8): 663-668. Ji M, Guan HJ. Molecular pathological changes of cataract[ J]. Yan Ke Xue Bao, 2021, 36(8): 663-668.季敏, 管怀进. 白内障的分子病理改变[ J]. 眼科学报, 2021, 36(8): 663-668. Ji M, Guan HJ. Molecular pathological changes of cataract[ J]. Yan Ke Xue Bao, 2021, 36(8): 663-668.
30、Augusteyn RC. Alpha-crystallin: a review of its structure and function[ J]. Clin Exp Optom, 2004, 87(6): 356-366. DOI: 10.1111/ j.1444-0938.2004.tb03095.x.Augusteyn RC. Alpha-crystallin: a review of its structure and function[ J]. Clin Exp Optom, 2004, 87(6): 356-366. DOI: 10.1111/ j.1444-0938.2004.tb03095.x.
31、Horwitz J. Alpha-crystallin[ J]. Exp Eye Res, 2003, 76(2): 145-153. DOI: 10.1016/s0014-4835(02)00278-6.Horwitz J. Alpha-crystallin[ J]. Exp Eye Res, 2003, 76(2): 145-153. DOI: 10.1016/s0014-4835(02)00278-6.
32、Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5): 273-282. DOI: 10.1016/j.molmed.2012.03.005.Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5): 273-282. DOI: 10.1016/j.molmed.2012.03.005.
33、Sprague-Piercy MA, Rocha MA, Kwok AO, et al. α-crystallins in the vertebrate eye lens: complex oligomers and molecular chaperones[ J]. Annu Rev Phys Chem, 2021, 72: 143-163. DOI: 10.1146/annurevphyschem-090419-121428.Sprague-Piercy MA, Rocha MA, Kwok AO, et al. α-crystallins in the vertebrate eye lens: complex oligomers and molecular chaperones[ J]. Annu Rev Phys Chem, 2021, 72: 143-163. DOI: 10.1146/annurevphyschem-090419-121428.
34、Kumar PA, Suryanarayana P, Reddy PY, et al. Modulation of alphacrystallin chaperone activity in diabetic rat lens by curcumin[ J]. Mol Vis, 2005, 11: 561-568.Kumar PA, Suryanarayana P, Reddy PY, et al. Modulation of alphacrystallin chaperone activity in diabetic rat lens by curcumin[ J]. Mol Vis, 2005, 11: 561-568.
35、Borchman D, Delamere NA, McCauley LA, et al. Studies on the distribution of cholesterol, phospholipid, and protein in the human and bovine lens[ J]. Lens Eye Toxic Res, 1989, 6(4): 703-724.Borchman D, Delamere NA, McCauley LA, et al. Studies on the distribution of cholesterol, phospholipid, and protein in the human and bovine lens[ J]. Lens Eye Toxic Res, 1989, 6(4): 703-724.
36、Datiles MB 3rd, Ansari RR, Yoshida J, et al. Longitudinal study of agerelated cataract using dynamic light scattering: loss of α-crystallin leads to nuclear cataract development[ J]. Ophthalmology, 2016, 123(2): 248-254. DOI: 10.1016/j.ophtha.2015.10.007.Datiles MB 3rd, Ansari RR, Yoshida J, et al. Longitudinal study of agerelated cataract using dynamic light scattering: loss of α-crystallin leads to nuclear cataract development[ J]. Ophthalmology, 2016, 123(2): 248-254. DOI: 10.1016/j.ophtha.2015.10.007.
37、Friedrich MG, Truscott RJ. Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress[ J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 5145-5152. DOI: 10.1167/iovs.10-5261.Friedrich MG, Truscott RJ. Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress[ J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 5145-5152. DOI: 10.1167/iovs.10-5261.
38、Timsina R, Mainali L. Association of alpha-crystallin with fiber cell plasma membrane of the eye lens accompanied by light scattering and cataract formation[ J]. Membranes, 2021, 11(6): 447. DOI: 10.3390/ membranes11060447.Timsina R, Mainali L. Association of alpha-crystallin with fiber cell plasma membrane of the eye lens accompanied by light scattering and cataract formation[ J]. Membranes, 2021, 11(6): 447. DOI: 10.3390/ membranes11060447.
39、Huang B, He W. Molecular characteristics of inherited congenital cataracts[ J]. Eur J Med Genet, 2010, 53(6): 347-357. DOI: 10.1016/ j.ejmg.2010.07.001.Huang B, He W. Molecular characteristics of inherited congenital cataracts[ J]. Eur J Med Genet, 2010, 53(6): 347-357. DOI: 10.1016/ j.ejmg.2010.07.001.
40、Shiels A , Hejtmancik JF. Molecular genetics of cataract[ J]. Prog Mol Biol Transl Sci, 2015, 134: 203-218. DOI: 10.1016/ bs.pmbts.2015.05.004.Shiels A , Hejtmancik JF. Molecular genetics of cataract[ J]. Prog Mol Biol Transl Sci, 2015, 134: 203-218. DOI: 10.1016/ bs.pmbts.2015.05.004.
41、Berry V, Ionides A, Pontikos N, et al. The genetic landscape of crystallins in congenital cataract[ J]. Orphanet J Rare Dis, 2020, 15(1): 333. DOI: 10.1186/s13023-020-01613-3.Berry V, Ionides A, Pontikos N, et al. The genetic landscape of crystallins in congenital cataract[ J]. Orphanet J Rare Dis, 2020, 15(1): 333. DOI: 10.1186/s13023-020-01613-3.
42、Khan AO, Aldahmesh MA, Meyer B. Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C)[ J]. Am J Ophthalmol, 2007, 144(6): 949-952. DOI: 10.1016/j.ajo.2007.08.005.Khan AO, Aldahmesh MA, Meyer B. Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C)[ J]. Am J Ophthalmol, 2007, 144(6): 949-952. DOI: 10.1016/j.ajo.2007.08.005.
43、Gerasimovich ES, Strelkov SV, Gusev NB. Some properties of three αB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases[ J]. Biochimie, 2017, 142: 168-178. DOI: 10.1016/j.biochi.2017.09.008.Gerasimovich ES, Strelkov SV, Gusev NB. Some properties of three αB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases[ J]. Biochimie, 2017, 142: 168-178. DOI: 10.1016/j.biochi.2017.09.008.
44、Kashani MR , Yousefi R , Akbarian M, et al. Structure, chaperone activity, and aggregation of wild-type and R12C mutant αB-crystallins in the presence of thermal stress and calcium ion - implications for role of calcium in cataract pathogenesis[ J]. Biochemistry, 2016, 81(2): 122- 134. DOI: 10.1134/S0006297916020061.Kashani MR , Yousefi R , Akbarian M, et al. Structure, chaperone activity, and aggregation of wild-type and R12C mutant αB-crystallins in the presence of thermal stress and calcium ion - implications for role of calcium in cataract pathogenesis[ J]. Biochemistry, 2016, 81(2): 122- 134. DOI: 10.1134/S0006297916020061.
45、Xia XY, Wu QY, An LM, et al. A novel P20R mutation in the alpha-B crystallin gene causes autosomal dominant congenital posterior polar cataracts in a Chinese family[ J]. BMC Ophthalmol, 2014, 14: 108. DOI: 10.1186/1471-2415-14-108.Xia XY, Wu QY, An LM, et al. A novel P20R mutation in the alpha-B crystallin gene causes autosomal dominant congenital posterior polar cataracts in a Chinese family[ J]. BMC Ophthalmol, 2014, 14: 108. DOI: 10.1186/1471-2415-14-108.
46、Panda AK, Nandi SK, Chakraborty A, et al. Differential role of arginine mutations on the structure and functions of α-crystallin[ J]. Biochim Biophys Acta, 2016, 1860(1 Pt B): 199-210. DOI: 10.1016/ j.bbagen.2015.06.004.Panda AK, Nandi SK, Chakraborty A, et al. Differential role of arginine mutations on the structure and functions of α-crystallin[ J]. Biochim Biophys Acta, 2016, 1860(1 Pt B): 199-210. DOI: 10.1016/ j.bbagen.2015.06.004.
47、Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin mutation in dilated cardiomyopathy[ J]. Biochem Biophys Res Commun, 2006, 342(2): 379-386. DOI: 10.1016/j.bbrc.2006.01.154.Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin mutation in dilated cardiomyopathy[ J]. Biochem Biophys Res Commun, 2006, 342(2): 379-386. DOI: 10.1016/j.bbrc.2006.01.154.
48、Khaleghinejad SH, Shahsavani MB, Ghahramani M, et al. Investigating the role of double mutations R12C/P20R , and R12C/R69C on structure, chaperone-like activity, and amyloidogenic properties of human αB-crystallin[ J]. Int J Biol Macromol, 2023, 242(Pt 1): 124590. DOI: 10.1016/j.ijbiomac.2023.124590.Khaleghinejad SH, Shahsavani MB, Ghahramani M, et al. Investigating the role of double mutations R12C/P20R , and R12C/R69C on structure, chaperone-like activity, and amyloidogenic properties of human αB-crystallin[ J]. Int J Biol Macromol, 2023, 242(Pt 1): 124590. DOI: 10.1016/j.ijbiomac.2023.124590.
49、Andley UP. Crystallins in the eye: function and pathology[ J]. Prog Retin Eye Res, 2007, 26(1): 78-98. DOI: 10.1016/ j.preteyeres.2006.10.003.Andley UP. Crystallins in the eye: function and pathology[ J]. Prog Retin Eye Res, 2007, 26(1): 78-98. DOI: 10.1016/ j.preteyeres.2006.10.003.
50、Haslbeck M, Peschek J, Buchner J, et al. Structure and function of α-crystallins: Traversing from in vitro to in vivo[ J]. Biochim Biophys Acta, 2016, 1860(1 Pt B): 149-166. DOI: 10.1016/ j.bbagen.2015.06.008.Haslbeck M, Peschek J, Buchner J, et al. Structure and function of α-crystallins: Traversing from in vitro to in vivo[ J]. Biochim Biophys Acta, 2016, 1860(1 Pt B): 149-166. DOI: 10.1016/ j.bbagen.2015.06.008.
1、国家自然科学基金青年项目(82301209);广州市校(院)联合资助项目(2023A03J0174)。
This work was supported by the National Natural Science Foundation of China Youth Project (82301209) and School (Hospital) Joint Funding Program of Guangzhou (2023A03J0174).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录