Abstract: Deep anterior lamellar keratoplasty (DALK) is preferred over conventional penetrating keratoplasty (PKP) for the treatment of anterior corneal opacities or ectasias due to decreased risk of endothelial rejection. However, DALK remains surgically challenging, largely due to challenges associated with achieving consistent pneumo-dissection of posterior stroma from the underlying pre-Descemet’s or Descemet’s membrane (DM). Air must be injected at sufficient depth in the corneal stroma in order to achieve successful pneumo-dissection, but advancing a needle too deep into the cornea can lead to perforation of DM. We describe here a novel technique using a handheld slit lamp (Eidolon model 510L, Eidolon Optical LLC, Natick, MA, USA) to assist in creation of the big-bubble in DALK surgery. Use of a handheld slit beam intraoperatively is a safe, relatively inexpensive, and effective technique for increasing the success of big-bubble formation in DALK procedures.
Abstract: There are many advantages to understanding the genetics of human disease. Genetic markers can be used to calculate the risk of developing a disease, and elucidation of genetic risk factors can pinpoint the molecular aetiology of disease, which can facilitate the development of targeted therapies. Diabetic retinopathy (DR) is a common complication of diabetes that has a significant impact on quality of life. It has a clear genetic component, but determination of the genetic risk factors has proven difficult. To date, genome-wide studies for DR have been conducted on relatively small patient cohorts compared to other complex eye diseases and replication of genetic findings has been limited. The disease is highly heterogeneous, confounding attempts to classify patients into appropriate groups for genetic analysis and making direct comparisons between studies challenging. Future studies to determine the genetic causes of DR will need to focus on larger sample sizes, detailed phenotyping and appropriate classification of patients. Global co-operation and meta-analyses combining data from multiple studies will be critical to the discovery of genetic risk loci for DR.
Abstract: The Guangzhou Twin Eye Study (GTES) is a population-based study of young twins residing in Guangzhou City. The major aim of GTES is to explore the impact of genes, environmental factors and gene-environment interactions on common eye diseases. From 2006, for more than 1,300 twin pairs, age 7–26 years old, progressive ocular phenotypes, such as refraction, ocular biometrics, weight, and height were collected annually, while non-progressive phenotypes such as parental refraction, corneal thickness, retinal fundus, intraocular pressure and DNA only collected at baseline. In the current study, we summarize the major findings on the etiology of myopia in recent decades.
Abstract: Acute retinal arterial ischemia, which includes transient monocular vision loss (TMVL), branch retinal artery occlusion (BRAO), central retinal artery occlusion (CRAO) and ophthalmic artery occlusion (OAO), is most commonly the consequence of an embolic phenomenon from the ipsilateral carotid artery, heart or aortic arch, leading to partial or complete occlusion of the central retinal artery (CRA) or its branches. Acute retinal arterial ischemia is the ocular equivalent of acute cerebral ischemia and is an ophthalmic and medical emergency. Patients with acute retinal arterial ischemia are at a high risk of having further vascular events, such as subsequent strokes and myocardial infarctions (MIs). Therefore, prompt diagnosis and urgent referral to appropriate specialists and centers is necessary for further work-up (such as brain magnetic resonance imaging with diffusion weighted imaging, vascular imaging, and cardiac monitoring and imaging) and potential treatment of an urgent etiology (e.g., carotid dissection or critical carotid artery stenosis). Since there are no proven, effective treatments to improve visual outcome following permanent retinal arterial ischemia (central or branch retinal artery occlusion), treatment must focus on secondary prevention measures to decrease the likelihood of subsequent ischemic events.
Abstract: Optical coherence tomography (OCT) is an ocular imaging technique that can complement the neuro-ophthalmic assessment, and inform our understanding regarding functional consequences of neuroaxonal injury in the afferent visual pathway. Indeed, OCT has emerged as a surrogate end-point in the diagnosis and follow up of several demyelinating syndromes of the central nervous system (CNS), including optic neuritis (ON) associated with: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies. Recent advancements in enhanced depth imaging (EDI) OCT have distinguished this technique as a new gold standard in the diagnosis of optic disc drusen (ODD). Moreover, OCT may enhance our ability to distinguish cases of papilledema from pseudopapilledema caused by ODD. In the setting of idiopathic intracranial hypertension (IIH), OCT has shown benefit in tracking responses to treatment, with respect to reduced retinal nerve fiber layer (RNFL) measures and morphological changes in the angling of Bruch’s membrane. Longitudinal follow up of OCT measured ganglion cell-inner plexiform layer thickness may be of particular value in managing IIH patients who have secondary optic atrophy. Causes of compressive optic neuropathies may be readily diagnosed with OCT, even in the absence of overt visual field defects. Furthermore, OCT values may offer some prognostic value in predicting post-operative outcomes in these patients. Finally, OCT can be indispensable in differentiating optic neuropathies from retinal diseases in patients presenting with vision loss, and an unrevealing fundus examination. In this review, our over-arching goal is to highlight the potential role of OCT, as an ancillary investigation, in the diagnosis and management of various optic nerve disorders.
Abstract: Myasthenia gravis (MG) is an autoimmune antibody-mediated disorder which causes fluctuating weakness in ocular, bulbar and limb skeletal muscles. There are two major clinical types of MG. Ocular MG (OMG) affects extra ocular muscles associated with eye movement and eyelid function and generalized MG results in muscle weakness throughout the body. Patients with OMG have painless fluctuating extra ocular muscles weakness, diplopia and ptosis accompanied by normal visual acuity and pupillary function. Frequently, patients with OMG develop generalized MG over 24 months. Pure OMG is more often earlier in onset (<45 years) than generalized MG. It can also occur as part of an immune-genetic disorder or paraneoplastic syndrome related to thymus tumors. Diagnosis is based on clinical manifestations, laboratory findings, electrophysiological evaluation and pharmacologic tests. Therapeutic strategies for MG consist of symptom relieving medications (e.g., acetylcholine esterase inhibitors), immunosuppressive agents, and surgical intervention (e.g., thymectomy).
Background: To compare objective electrophysiological contrast sensitivity function (CSF) in patients implanted with either multifocal intraocular lenses (MIOLs) or monofocal intraocular lenses (IOLs) by pattern reversal visual evoked potentials (prVEP) measurements.
Methods: Fourty-five cataract patients were randomly allocated to receive bilaterally: apodized diffractive-refractive Alcon Acrysof MIOL (A), full diffractive AMO Tecnis MIOL (B) or monofocal Alcon Acrysof IOL (C). Primary outcomes: 1-year differences in objective binocular CSF measured by prVEP with sinusoid grating stimuli of 6 decreasing contrast levels at 6 spatial frequencies. Secondary outcomes: psychophysical CSF measured with VCTS-6500, photopic uncorrected distance (UDVA), and mesopic and photopic uncorrected near and intermediate visual acuities (UNVA and UIVA respectively).
Results: Electrophysiological CSF curve had an inverted U-shaped morphology in all groups, with a biphasic pattern in Group B. Group A showed a lower CSF than group B at 4 and 8 cpd, and a lower value than group C at 8 cpd. Psychophysical CSF in group A exhibited a lower value at 12 cpd than group B. Mean photopic and mesopic UNVA and UIVA were worse in monofocal group compared to the multifocal groups. Mesopic UNVA and UIVA were better in group B.
Conclusions: Electrophysiological CSF behaves differently depending on the types of multifocal or monofocal IOLs. This may be related to the visual acuity under certain conditions or to IOL characteristics. This objective method might be a potential new tool to investigate on MIOL differences and on subjective device-related quality of vision.
Background: Epidermolysis bullosa (EB) is a heterogynous group of skin disorders characterized by formation of blisters and erosions of the skin in response to minor trauma. Subtypes include EB simplex (EBS), junctional EB (JEB), dystrophic form of EB (DEB) and finally Kindler syndrome (KS). In addition to dermal manifestation, patients can present with various ophthalmic pathologies.
Methods: We reviewed the pathobiology, epidemiology and management of ocular manifestations as well as current and future innovative therapies for EB.
Results: The severity and incidence of ocular involvement were the highest in the recessive DEB-generalized severe and JEB-generalized severe subtypes. Recurrent corneal erosions and blisters were the most common finding and seem to correlate with skin disease. Other manifestations include corneal scaring, blepharitis, ectropion, symblepharon, infantile cataracts, lacrimal duct obstruction as well as meibomian gland deficiency.
Conclusions: Ophthalmology consult as well as regular follow-up are essential in the multi-disciplinary approach of this disease. Indeed, parents’ and patients’ education as well as early diagnosis and treatment are crucial to prevent permanent and long-term visual disabilities.