First Author |
Publication Year |
Country |
Camera |
Reference standard |
Model |
Algorithm Evaluation |
Screening Criteria |
Source of data |
Number of centers |
Number of doctors |
Experience year of doctors |
GA/w |
Birth Weight/kg |
Gender (M/F) |
Dataset (Validation dataset) |
Classification |
Validation Dataset |
Outcome |
Sensitivity/Specificity |
Accuracy |
AUROC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brown[6] |
2018 |
America |
RetCam |
Clinical diagnosis |
CNN: U-Net and Inception V1 |
the 5-fold cross validation |
NA |
i-ROP |
8 |
3 |
2 ophthalmologists and 1 coordinator |
NA |
NA |
NA |
5511 (100) |
cases |
54Normal, 31pre-plus, 15PLUS |
Normal vs. pre and plus |
0.93/0.94 |
0.91 |
0.98* |
Normal and pre vs. PLUS |
1/0.94 |
- |
|||||||||||||||||||
Wang[26] |
2018 |
China |
RetCam3 |
ICROP, CRYO-ROP, and ETROP |
Id-Net; Gr-Net |
NR |
NA |
Hospital |
1 |
4 |
NA |
NA |
NA |
93/78 |
2226 (298) |
cases |
149Normal, 149ROP, 52 minor ROP, 52 severe ROP |
ROP vs. no- ROP |
0.97/0.99 |
NA |
NA |
(520) 104 |
Minor vs. Severe ROP# |
0.88/0.92 |
NA |
NA |
|||||||||||||||||
Hu[27] |
2019 |
China |
RetCam3 |
ICROP |
CNNs: VGG-16, Inception-V2; ResNet-50 |
select the best model |
NA |
Hospital |
1 |
3 |
1 chief physician and 2 doctors 5+ years |
32(25-41) |
1.994(0.7-4.25) |
NA |
2068 (300) |
images |
150ROP, 150no ROP |
ROP vs. no-ROP |
0.96/0.98 |
0.97 |
0.99 |
466 (100) |
50mild, 50 severe |
Mild vs. Severe ROP× |
0.82/0.86 |
0.84 |
0.92 |
||||||||||||||||
Tan[28] |
2019 |
New Zealand |
RetCam |
ETROP |
ROP. AI |
NA |
<1250 g birth weight or <30 weeks gestational age |
ART-ROP |
4 |
NA |
NA |
NA |
NA |
NA |
3487 (116) |
images |
33 PLUS, 26 pre-plus; 57 normal |
PLUS vs. not-PLUS |
0.94/0.81 |
0.86 |
0.98 |
Pre plus vs. normal |
0.81/0.81 |
0.81 |
- |
||||||||||||||||||
Zhang[29] |
2019 |
China |
Retcam 2/3 |
Clinical diagnosis |
DNN: AlexNet, VGG 16, GoogLeNet |
select the best model |
1) birth weight <2,000 g and 2) preterm infants with birth weight 2,000 g but having severe systemic disorders (according to pediatricians’ assessment). |
Hospital |
1 |
5 |
2 chief physicians, 2 attending physicians, 1 resident |
32.0(25,36.2) |
1.50(0.78-2.00 |
10075/7726 |
19543 (17801) |
images |
8090ROP, 9711 without ROP |
ROP vs. no ROP |
0.941/0.993 |
0.9 |
0.998 |
Huang[30] |
2020 |
China and Japan |
RetCam |
ICROP |
DNN: VGG19*, VGG16, InceptionV3, DenseNet, and MobileNet |
select the best module and then 5-fold cross validation |
born within 37 weeks of gestation and/or had to weigh ≤ 1500 g at birth |
Hospital |
2 |
3 |
10 years of experience working |
NA |
NA |
NA |
267 (101) |
cases |
59 ROP, 42 no ROP |
ROP vs. no ROP |
0.97/0.95 |
0.96 |
0.97 |
254 (85) |
63mild ROP, 22 severe ROP |
Mild vs. severe |
0.99/0.99 |
0.99 |
0.99 |
||||||||||||||||
Mao[31] |
2020 |
China |
RetCam |
Clinical diagnosis |
U-Net, DenseNet |
Select the best model based on the 5-fold cross-validation |
NA |
Hospital |
1 |
1 |
NA |
31.0±2.0
|
1.5833± 0.4016
|
NA |
5711 (450) |
images |
305normal, 104pre-plus, 41PLUS |
PLUS vs. not PLUS |
0.95/0.98 |
- |
0.93 |
Preplus vs. not preplus |
0.92/0.97 |
- |
0.99 |
||||||||||||||||||
Tong[32] |
2020 |
China |
RetCam |
Clinical diagnosis |
ResNet;Faster-RCNN |
10-fold cross-validation |
NA |
Hospital |
1 |
13 |
Junior (11), 10 years (2) |
NA |
NA |
NA |
36231 (9772) |
images |
519Grading’, 261 PLUS, 8992normal |
Grading’ vs. others |
0.78/0.93 |
0.90 |
- |
PLUS vs. not PLUS |
0.71/0.91 |
0.90 |
- |
||||||||||||||||||
Huang[33] |
2021 |
China |
RetCam |
Clinical diagnosis |
CNN |
5-fold cross-validation |
infants with a BW of 1500–2000 g or a GA above 32 weeks with any unstable clinical condition |
Hospital |
3 |
3 |
At least 3years |
NA |
NA |
NA |
1975 (244) |
images |
94no-ROP, 44Stage 1, 106Stage 2 |
ROP vs. no ROP |
0.96/0.96 |
0.92 |
0.96 |
Stage 1 vs. others |
0.92/0.95 |
- |
0.93 |
||||||||||||||||||
Stage 2 vs. others |
0.90/0.99 |
- |
0.92 |
||||||||||||||||||
Lei[34] |
2021 |
China |
RetCam2 or 3 |
ICROP |
CASA, Grade CAM, Res-Net 50 |
Select the best model |
Birth weight ≤2000 g and gestational age≤36.5 weeks |
ROP Group |
1 |
5 |
Two are chief physicians, two are attending physicians, one is junior ophthalmologist |
NA |
NA |
NA |
22961 (5160) |
images |
3078ROP, 2082 no ROP |
ROP vs. no ROP |
0.95/0.99 |
0.99 |
0.99 |
Ramachandran[35] |
2021 |
India |
RetCam3 |
ICROP |
U-COSFIRE; Darknet-53 |
Select the best model |
BW<2000 g or GW<34w |
KIDROP |
1 |
3 |
NA |
No-PLUS:32.4±1.1 |
No-PLUS:1350±240 |
NA |
289(161) |
images |
94normal, 67plus |
PLUS vs. no PLUS |
0.99/0.98 |
0.97 |
0.99 |
PLUS:30.9±1.8 |
PLUS: 1.925 ±0.774 |
||||||||||||||||||||
Li[36] |
2022 |
China |
RetCam3 |
Clinical diagnosis |
Retina U-Nets; Dense Net |
Select the best model based on the 5-fold cross-validation |
BW<2000 g and GW<37w |
Hospital |
1 |
3 |
NA |
30.43 ± 5.80 |
1.44203 ± 0.51703 |
NA |
18827 (3680) |
images |
2893no ROP, 378stage I, 262stageII, 147stage III |
Stage I vs. others |
0.90/0.98 |
0.98 |
0.9663 |
Stage II vs. others |
0.93/0.99 |
||||||||||||||||||||
Stage III vs. otherts |
0.92/0.99 |
||||||||||||||||||||
Normal vs. others |
0.96/0.96 |
||||||||||||||||||||
Attallah[37] |
2023 |
China |
Retcam2/3 |
Clinical diagnosis |
ResNet-50; DarkNet-53; MobileNet |
5-fold cross-validation |
<2000 g in weight at birth and 2000 g premature neonates who have significant systemic diseases at birth. |
Hospital |
30 |
5 |
2 chief physicians, 2 attending physicians, 1 resident |
31.9 (24-36.4) |
1.49 (0.63-2.00) |
10075/7726 |
17801 (1742) |
images |
155ROP, 1587no ROP |
ROP vs. no ROP |
0.90/0.97 |
0.94 |
0.98 |
32.0 (25-36.2) |
1.50 (0.78-2.00) |
988/754 |
|||||||||||||||||||
Wagner[38] |
2023 |
UK |
RetCam Version 2 |
Clinical diagnosis |
Bespoke and CFDL models |
Select the best model |
BW<1501 g or GW≤32w |
Hospital |
1 |
4 |
3 years |
NA |
NA |
NA |
6141 (200) |
Images |
111no ROP, 43pre plus, 46 PLUS |
ROP vs. no ROP |
0.973/0.900 |
- |
0.986 |
Pre plus vs. others |
0.860/0.860 |
- |
0.927 |
||||||||||||||||||
PLUS vs. others |
0.522/0.981 |
- |
0.974 |
|
AI detection in ROP |
AI detection in PLUS |
Sensitivity (95%CI) |
0.95 (0.93, 0.96) |
0.92 (0.80, 0.97) |
Specificity (95%CI) |
0.97 (0.94, 0.98) |
0.95 (0.91, 0.97) |
LR+ (95%CI) |
31.7 (16.7, 59.9) |
18.5 (9.9, 34.8) |
LR- (95%CI) |
0.05 (0.04, 0.07) |
0.09 (0.03,0.22) |
DOR (95%CI) |
611 (300, 1,244) |
218 (58, 815) |
AI detection |
Covariates |
Category |
Studies (n) |
Meta analytic summary estimates |
|||
Sensitivity (95% CI) |
P |
Specificity (95% CI) |
P |
||||
ROP |
Country |
China |
8 |
0.95 (0.95-0.96) |
< 0.01 |
0.98 (0.97-0.99) |
0.60 |
Other country |
3 |
0.94 (0.90-0.98) |
|
0.89 (0.82-0.97) |
|
||
Centers |
>1 |
5 |
0.93 (0.91-0.96) |
< 0.01 |
0.94 (0.90-0.99) |
< 0.01 |
|
=1 |
6 |
0.95 (0.95-0.96) |
|
0.98 (0.97-0.99) |
|
||
Data source |
Hospitals |
8 |
0.95 (0.94-0.97) |
< 0.01 |
0.97 (0.96-0.99) |
0.59 |
|
Database |
3 |
0.93 (0.89-0.97) |
|
0.95 (0.90-1.00) |
|
||
Doctors |
≥3 |
5 |
0.94 (0.92-0.97) |
< 0.01 |
0.96 (0.92-0.99) |
0.01 |
|
<3 |
6 |
0.95 (0.94-0.97) |
|
0.98 (0.96-1.00) |
|
||
PLUS |
Country |
China |
5 |
0.91 (0.80-1.00) |
0.85 |
0.95 (0.90-0.99) |
0.06 |
Other country |
4 |
0.93 (0.83-1.00) |
|
0.95 (0.91-1.00) |
|
||
Centers |
>1 |
3 |
0.98 (0.95-1.00) |
0.03 |
0.93 (0.86-1.00) |
0.05 |
|
=1 |
6 |
0.86 (0.75-0.98) |
|
0.96 (0.93-0.98) |
|
||
Data source |
Hospitals |
6 |
0.86 (0.75-0.98) |
0.06 |
0.96 (0.92-0.99) |
0.40 |
|
Database |
3 |
0.98 (0.95-1.00) |
|
0.94 (0.87-1.00) |
|
||
Doctors |
≥3 |
3 |
0.73 (0.53-0.93) |
< 0.01 |
0.95 (0.90-1.00) |
0.11 |
|
<3 |
6 |
0.96 (0.90-1.00) |
|
0.95 (0.92-0.99) |
|