建立标准化的数据中心有利于收集高质量数据资源与促进医学人工智能的发展,在医疗大数据的基础上建立不同应用场景的医疗人工智能系统,整合、搭建可满足多种疾病诊疗需求的智能服务云平台,全面提升智能医疗管理的效率。本文以眼科为研究基础,对眼科数据中心和智能服务云平台的建设经验进行总结分析,为眼科及其他专科开展人工智能研究、建立数据中心、搭建智能服务云平台等方面提供参考。
The establishment of standardized data center can promote the accumulation of high-quality data resources and the development of medical artificial intelligence. On the basis of medical big data, medical artificial intelligence systems in different application scenarios can be established and integrated into an intelligent service cloud platform, which improves the management efficiency of intelligent medical systems. This article takes ophthalmology as a prototype to summarize the experience of the establishment of ophthalmic data center and intelligent service cloud platform, aiming to provide reference and guidance for ophthalmology and other specialties to carry out artificial intelligence research, establish data center and build an intelligent service cloud platform.
剥脱性青光眼是剥脱综合征继发的一类青光眼,临床上少见。本文报告2例患者,患眼瞳孔缘可见灰白色碎屑样物质沉积,散大瞳孔后可见晶状体前囊周边部混浊带,房角镜下可见Sampaolesi线。认识其临床特征,将有助于提高其诊治率。
Exfoliation glaucoma is a category of glaucoma secondary to exfoliation syndrome, which is rarely encountered in clinical practice. We reported 2 cases with deposits of white material on the pupillary border of the iris. Opacity band could be observed surrounding the anterior lens capsule after pupil dilation, and the Sampaolesi line was seen under gonioscope. Understanding the clinical characteristics contribute to improving the diagnosis and treatment of exfoliation glaucoma.
目的:分析医学人工智能通识课程“眼科人工智能的研发与应用”的开展效果,为相关医学人工智能通识课程的开展提供参考和借鉴。方法:纵向观察性研究。观察分析2020年秋季学期眼科人工智能的研发与应用通识课程学生人群,课程考核结果以及学生对课程的整体评价。结果:共有118名本科生同学参与了课程学习。其中大部分为低年级临床医学专业本科生。期中考核得分为77.21±10.07,有56位同学(47.46%)达到80分以上。期末考核得分为82.24±6.77,有91位同学(77.12%)达到80分以上。同学对课程的评分为98.76±3.55,超过90%的同学表示课程备课认真、授课条理清晰、表达准确。结论:本课程的顺利进展证明医学人工智能联合教学模式的可行性,理论和实践穿插的教学设置帮助同学们更好地掌握知识技术,完成教学目标。
Objective: To analyze the effectiveness of medical education curriculum named “Development and Application of Ophthalmic Artificial Intelligence”, and provide reference for the development of other related curriculums. Methods: Longitudinal observational study method was adopted. During the fall semester of 2020, we conducted an education curriculum named “Development and Application of Ophthalmic Artificial Intelligence” and analyzed the results of mid-term and final examinations, and curriculum evaluation of students. Results: There were 118 undergraduate students taking the course and most of them were junior students majoring in clinical medicine. The score of the mid-term examination was in the range of 77.2±10.07, and 56 students (47.46%) got more than 80 points. The score of the final examination was in the range of 82.24±6.77, and 91 students (77.12%) got more than 80 points. The score of course evaluation of students was in the range of 98.76±3.55, and more than 90% of the students thought that teachers have made full preparations before class, together with clear teaching logic and accurate expressions in class. Conclusion: The smooth progress of our course proved the feasibility of medical artificial intelligence teaching. The teaching setting interspersed with theory and practice could help students to master knowledge and technology better, so as to achieve the teaching objectives.
目的:评价StarEyes 900(万灵帮桥,中国)与IOLMaster 500(蔡司,德国)2种眼科光学生物测量仪测量健康受试者眼部参数的差异性、相关性及一致性。方法:前瞻性观察2021年6月至7月于中山大学中山眼科中心进行眼部检查的62例健康受试者共124只眼,分别通过StarEyes 900与IOLMaster 500完成眼轴长度(axial length,AL)、最小角膜屈光力径线上角膜曲率(keratometry for the flattest meridian,Kf)、最大角膜屈光力径线上角膜曲率(keratometry for the steepest meridian,Ks)、平均角膜曲率(mean keratometry,Km)、角膜白到白直径(white-to-white corneal diameter,WTW)等参数的测量,采用配对t检验、Pearson相关分析和Bland-Altman法对其测量结果的差异进行评价。结果:StarEyes 900与IOLMaster 500测量的AL分别为(24.18±1.08) mm和(24.16±1.08) mm;Kf分别为(42.84±1.65) D和(43.04±1.57) D;Ks分别为(44.34±1.90) D和(44.17±1.80) D;Km分别为(43.59±1.73) D和(43.61±1.64) D;WTW分别为(11.64±0.29) mm和(11.64±0.30) mm。StarEyes 900与IOLMaster 500在测量Km、WTW时,其差异无统计学意义(P>0.05),而在AL、Kf、Ks的测量上差异有统计学意义(P<0.01)。其中StarEyes 900所测的AL和Ks值大于IOLMaster 500,而Kf、Km和WTW值则小于IOLMaster 500。经Pearson相关分析,2种仪器的测量结果均表现出较高的相关性;经Bland-Altman法评价,2种仪器的测量结果均表现出较高的一致性。结论:StarEyes 900与IOLMaster 500测量的Km、WTW均表现出较高的一致性,2种方法可互为参考;测量的AL、Kf、Ks存在的差异具有统计学意义;各项参数的测量均具有较好的相关性和一致性。
Objective: To evaluate the difference, correlation and agreement of eye parameters measured by StarEyes 900 visual function analyzer (Wan Ling Bang Qiao, China) and IOLMaster 500 (Carl Zeiss, Germany) swept-source optical coherence tomography biometer. Methods: A prospective study was designed involving 62 healthy subjects (124 eyes) undergoing ophthalmic examinations in Zhongshan Ophthalmic Center from June 2021 to July 2021. Data from their both eyes were selected for analysis in all patients. Axial length (AL), keratometry for the steepest meridian (Ks), keratometry for the flattest meridian (Kf), mean keratometry (Km) and corneal diameter (WTW) were measured by the StarEyes 900 visual function analyzer and IOLMaster 500 swept-source optical coherence tomography biometer. A paired t-test was used to analyze the differences in measurement results. The Pearson correlation coefficient was used to analyze the correlation. Bland-Airman method was used to assess the agreement of the instruments. Results: The AL, Kf, Ks, Km and WTW obtained by StarEyes 900 and IOLMaster 500 were (24.18±1.08) mm and (24.16±1.08) mm, (42.84±1.65) D and (43.04±1.57) D, (44.34±1.90) D and (44.17±1.80) D, (43.59±1.73) D and (43.61±1.64) D, and (11.64±0.29) mm and (11.64±0.30) mm, respectively. The Km and WTW of the two devices showed no significant difference (P>0.05), while the AL, Ks and Kf showed significant differences (all P<0.01). The AL and Ks obtained by StarEyes 900 were higher than by IOLMaster 500, while the Kf, Km and WTW were lower. The measurements of five aforementioned biometric parameters by both devices showed good correlation by Pearson correlation coefficient and good agreement by Bland-Airman. Conclusion: The Km and WTW measured by the two devices showed no significant difference, and provided references to one another. The difference in AL, Kf and Ks between the two devices showed significant differences. All of the measurements showed good correlation by Pearson correlation coefficient and good agreement by Bland-Airman.