1、2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Trends
in prevalence of blindness and distance and near vision impairment
over 30 years: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health, 2021, 9(2): e130-e143. DOI: 10.1016/S2214-
109X(20)30425-3.2019 Blindness and Vision Impairment Collaborators GBD, Vision
Loss Expert Group of the Global Burden of Disease Study. Trends
in prevalence of blindness and distance and near vision impairment
over 30 years: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health, 2021, 9(2): e130-e143. DOI: 10.1016/S2214-
109X(20)30425-3.
2、Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity
resulting from the global burden of myopia: systematic review, metaanalysis, and modeling[ J]. Ophthalmology, 2019, 126(3): 338-346.
DOI: 10.1016/j.ophtha.2018.10.029.Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity
resulting from the global burden of myopia: systematic review, metaanalysis, and modeling[ J]. Ophthalmology, 2019, 126(3): 338-346.
DOI: 10.1016/j.ophtha.2018.10.029.
3、Bukau B, Weissman J, Horwich A. Molecular chaperones and protein
quality control[ J]. Cell, 2006, 125(3): 443-451. DOI: 10.1016/
j.cell.2006.04.014.Bukau B, Weissman J, Horwich A. Molecular chaperones and protein
quality control[ J]. Cell, 2006, 125(3): 443-451. DOI: 10.1016/
j.cell.2006.04.014.
4、Arrigo AP, Simon S. Expression and functions of heat shock proteins in
the normal and pathological mammalian eye[ J]. Curr Mol Med, 2010,
10(9): 776-793. DOI: 10.2174/156652410793937804.Arrigo AP, Simon S. Expression and functions of heat shock proteins in
the normal and pathological mammalian eye[ J]. Curr Mol Med, 2010,
10(9): 776-793. DOI: 10.2174/156652410793937804.
5、Zininga T, R amatsui L, Shonhai A . Heat shock proteins as
immunomodulants[ J]. Molecules, 2018, 23(11): 2846. DOI: 10.3390/
molecules23112846.Zininga T, R amatsui L, Shonhai A . Heat shock proteins as
immunomodulants[ J]. Molecules, 2018, 23(11): 2846. DOI: 10.3390/
molecules23112846.
6、Creagh EM, Carmody RJ, Cotter TG. Heat shock protein 70 inhibits
caspase-dependent and-independent apoptosis in Jurkat T cells[ J]. Exp
Cell Res, 2000, 257(1): 58-66. DOI: 10.1006/excr.2000.4856.Creagh EM, Carmody RJ, Cotter TG. Heat shock protein 70 inhibits
caspase-dependent and-independent apoptosis in Jurkat T cells[ J]. Exp
Cell Res, 2000, 257(1): 58-66. DOI: 10.1006/excr.2000.4856.
7、Shan R, Liu N, Yan Y, et al. Apoptosis, autophagy and atherosclerosis:
relationships and the role of Hsp27[ J]. Pharmacol Res, 2021, 166:
105169. DOI: 10.1016/j.phrs.2020.105169.Shan R, Liu N, Yan Y, et al. Apoptosis, autophagy and atherosclerosis:
relationships and the role of Hsp27[ J]. Pharmacol Res, 2021, 166:
105169. DOI: 10.1016/j.phrs.2020.105169.
8、Fu JL, Zheng SY, Wang Y, et al. HSP90β prevents aging-related
cataract formation through regulation of the charged multivesicular
body protein (CHMP4B) and p53[ J]. Proc Natl Acad Sci U S A, 2023,
120(31): e2221522120. DOI: 10.1073/pnas.2221522120.Fu JL, Zheng SY, Wang Y, et al. HSP90β prevents aging-related
cataract formation through regulation of the charged multivesicular
body protein (CHMP4B) and p53[ J]. Proc Natl Acad Sci U S A, 2023,
120(31): e2221522120. DOI: 10.1073/pnas.2221522120.
9、Cui X, Du C, Wan S, et al. Deficiency of heat shock factor 4 promotes
lens epithelial cell senescence through upregulating p21cip1
expression[ J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11):
166233. DOI: 10.1016/j.bbadis.2021.166233.Cui X, Du C, Wan S, et al. Deficiency of heat shock factor 4 promotes
lens epithelial cell senescence through upregulating p21cip1
expression[ J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11):
166233. DOI: 10.1016/j.bbadis.2021.166233.
10、Reinehr S, Safaei A, Grotegut P, et al. Heat shock protein upregulation
supplemental to complex mRNA alterations in autoimmune
glaucoma[ J]. Biomolecules, 2022, 12(10): 1538. DOI: 10.3390/
biom12101538.Reinehr S, Safaei A, Grotegut P, et al. Heat shock protein upregulation
supplemental to complex mRNA alterations in autoimmune
glaucoma[ J]. Biomolecules, 2022, 12(10): 1538. DOI: 10.3390/
biom12101538.
11、Tsai T, Grotegut P, Reinehr S, et al. Role of heat shock proteins in
glaucoma[ J]. Int J Mol Sci, 2019, 20(20): 5160. DOI: 10.3390/ijms
20205160.Tsai T, Grotegut P, Reinehr S, et al. Role of heat shock proteins in
glaucoma[ J]. Int J Mol Sci, 2019, 20(20): 5160. DOI: 10.3390/ijms
20205160.
12、Chen DD, Peng X, Wang Y, et al. HSP90 acts as a senomorphic target
in senescent retinal pigmental epithelial cells[ J]. Aging, 2021, 13(17):
21547-21570. DOI: 10.18632/aging.203496.Chen DD, Peng X, Wang Y, et al. HSP90 acts as a senomorphic target
in senescent retinal pigmental epithelial cells[ J]. Aging, 2021, 13(17):
21547-21570. DOI: 10.18632/aging.203496.
13、Miao YD, Quan W, Dong X, et al. A bibliometric analysis of ferroptosis,
necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to
2022[ J]. Cell Death Discov, 2023, 9(1): 129. DOI: 10.1038/s41420-
023-01421-1.Miao YD, Quan W, Dong X, et al. A bibliometric analysis of ferroptosis,
necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to
2022[ J]. Cell Death Discov, 2023, 9(1): 129. DOI: 10.1038/s41420-
023-01421-1.
14、Tan Y, Chen H, Gong S, et al. Evolution and trends of childhood
cataract research in the past 10 years: a scientometric analysis[ J].
Heliyon, 2023, 9(6): e17590. DOI: 10.1016/j.heliyon.2023.e17590.Tan Y, Chen H, Gong S, et al. Evolution and trends of childhood
cataract research in the past 10 years: a scientometric analysis[ J].
Heliyon, 2023, 9(6): e17590. DOI: 10.1016/j.heliyon.2023.e17590.
15、Ali NQ, Patel DV, Lockington D, et al. Citation analysis of keratoconus
1900-2013: the most influential publications, authors, institutions, and
journals[ J]. Asia Pac J Ophthalmol, 2014, 3(2): 67-73. DOI: 10.1097/
APO.0b013e3182a4cf92.Ali NQ, Patel DV, Lockington D, et al. Citation analysis of keratoconus
1900-2013: the most influential publications, authors, institutions, and
journals[ J]. Asia Pac J Ophthalmol, 2014, 3(2): 67-73. DOI: 10.1097/
APO.0b013e3182a4cf92.
16、Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock
proteins in glaucoma[ J]. Invest Ophthalmol Vis Sci, 1998, 39(12):
2277-2287.Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock
proteins in glaucoma[ J]. Invest Ophthalmol Vis Sci, 1998, 39(12):
2277-2287.
17、Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock
proteins elicits glaucomatous loss of retinal ganglion cell neurons via
activated T-cell-derived fas-ligand[ J]. J Neurosci, 2008, 28(46): 12085-
12096. DOI: 10.1523/JNEUROSCI.3200-08.2008.Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock
proteins elicits glaucomatous loss of retinal ganglion cell neurons via
activated T-cell-derived fas-ligand[ J]. J Neurosci, 2008, 28(46): 12085-
12096. DOI: 10.1523/JNEUROSCI.3200-08.2008.
18、Saidi LJ, Polydoro M, Kay KR, et al. Carboxy terminus heat shock
protein 70 interacting protein reduces tau-associated degenerative
changes[ J]. J Alzheimers Dis, 2015, 44(3): 937-947. DOI: 10.3233/
JAD-142094.Saidi LJ, Polydoro M, Kay KR, et al. Carboxy terminus heat shock
protein 70 interacting protein reduces tau-associated degenerative
changes[ J]. J Alzheimers Dis, 2015, 44(3): 937-947. DOI: 10.3233/
JAD-142094.
19、Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and
protein folding as therapeutic targets in Parkinson's disease and other
synucleinopathies[ J]. Acta Neuropathol Commun, 2013, 1(1): 79.
DOI: 10.1186/2051-5960-1-79.Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and
protein folding as therapeutic targets in Parkinson's disease and other
synucleinopathies[ J]. Acta Neuropathol Commun, 2013, 1(1): 79.
DOI: 10.1186/2051-5960-1-79.
20、Anders F, Liu A, Mann C, et al. The small heat shock protein
α-crystallin B shows neuroprotective properties in a glaucoma animal
model[ J]. Int J Mol Sci, 2017, 18(11): 2418. DOI: 10.3390/ijms
18112418.Anders F, Liu A, Mann C, et al. The small heat shock protein
α-crystallin B shows neuroprotective properties in a glaucoma animal
model[ J]. Int J Mol Sci, 2017, 18(11): 2418. DOI: 10.3390/ijms
18112418.
21、Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: focus
on HSP70 and alpha crystallins in ganglion cell survival[ J]. Prog Retin
Eye Res, 2016, 52: 22-46. DOI: 10.1016/j.preteyeres.2016.03.001.Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: focus
on HSP70 and alpha crystallins in ganglion cell survival[ J]. Prog Retin
Eye Res, 2016, 52: 22-46. DOI: 10.1016/j.preteyeres.2016.03.001.
22、Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal
ganglion cells and lateral geniculate nucleus neurons via blockade of
the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J].
Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673-
5374.137595.Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal
ganglion cells and lateral geniculate nucleus neurons via blockade of
the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[ J].
Neural Regen Res, 2014, 9(14): 1395-1401. DOI: 10.4103/1673-
5374.137595.
23、von Thun Und Hohenstein-Blaul N, Bell K , Pfeiffer N, et al.
Autoimmune aspects in glaucoma[ J]. Eur J Pharmacol, 2016, 787: 105-
118. DOI: 10.1016/j.ejphar.2016.04.031.von Thun Und Hohenstein-Blaul N, Bell K , Pfeiffer N, et al.
Autoimmune aspects in glaucoma[ J]. Eur J Pharmacol, 2016, 787: 105-
118. DOI: 10.1016/j.ejphar.2016.04.031.
24、Wakefield%20D%2C%20Wildner%20G.%20Is%20glaucoma%20an%20autoimmune%20disease%3F%5B%20J%5D.%20Clin%20%0ATransl%20Immunology%2C%202020%2C%209(10)%3A%20e1180.%20DOI%3A%2010.1002%2Fcti2.1180.Wakefield%20D%2C%20Wildner%20G.%20Is%20glaucoma%20an%20autoimmune%20disease%3F%5B%20J%5D.%20Clin%20%0ATransl%20Immunology%2C%202020%2C%209(10)%3A%20e1180.%20DOI%3A%2010.1002%2Fcti2.1180.
25、Geyer O, Levo Y. Glaucoma is an autoimmune disease[ J]. Autoimmun
Rev, 2020, 19(6): 102535. DOI: 10.1016/j.autrev.2020.102535.Geyer O, Levo Y. Glaucoma is an autoimmune disease[ J]. Autoimmun
Rev, 2020, 19(6): 102535. DOI: 10.1016/j.autrev.2020.102535.
26、Chen H, Cho KS, Khanh Vu THK , et al. Author Correction:
Commensal microflora-induced T cell responses mediate progressive
neurodegeneration in glaucoma[ J]. Nat Commun, 2018, 9(1): 3914.
DOI: 10.1038/s41467-018-06428-2.Chen H, Cho KS, Khanh Vu THK , et al. Author Correction:
Commensal microflora-induced T cell responses mediate progressive
neurodegeneration in glaucoma[ J]. Nat Commun, 2018, 9(1): 3914.
DOI: 10.1038/s41467-018-06428-2.
27、Ingolia TD, Craig EA. Four small Drosophila heat shock proteins
are related to each other and to mammalian alpha-crystallin[ J].
Proc Natl Acad Sci USA, 1982, 79(7): 2360-2364. DOI: 10.1073/
pnas.79.7.2360.Ingolia TD, Craig EA. Four small Drosophila heat shock proteins
are related to each other and to mammalian alpha-crystallin[ J].
Proc Natl Acad Sci USA, 1982, 79(7): 2360-2364. DOI: 10.1073/
pnas.79.7.2360.
28、Horwitz J. Alpha-crystallin can function as a molecular chaperone[ J].
Proc Natl Acad Sci USA, 1992, 89(21): 10449-10453. DOI: 10.1073/
pnas.89.21.10449.Horwitz J. Alpha-crystallin can function as a molecular chaperone[ J].
Proc Natl Acad Sci USA, 1992, 89(21): 10449-10453. DOI: 10.1073/
pnas.89.21.10449.
29、季敏, 管怀进. 白内障的分子病理改变[ J]. 眼科学报, 2021, 36(8):
663-668.
Ji M, Guan HJ. Molecular pathological changes of cataract[ J]. Yan Ke
Xue Bao, 2021, 36(8): 663-668.季敏, 管怀进. 白内障的分子病理改变[ J]. 眼科学报, 2021, 36(8):
663-668.
Ji M, Guan HJ. Molecular pathological changes of cataract[ J]. Yan Ke
Xue Bao, 2021, 36(8): 663-668.
30、Augusteyn RC. Alpha-crystallin: a review of its structure and
function[ J]. Clin Exp Optom, 2004, 87(6): 356-366. DOI: 10.1111/
j.1444-0938.2004.tb03095.x.Augusteyn RC. Alpha-crystallin: a review of its structure and
function[ J]. Clin Exp Optom, 2004, 87(6): 356-366. DOI: 10.1111/
j.1444-0938.2004.tb03095.x.
31、Horwitz J. Alpha-crystallin[ J]. Exp Eye Res, 2003, 76(2): 145-153.
DOI: 10.1016/s0014-4835(02)00278-6.Horwitz J. Alpha-crystallin[ J]. Exp Eye Res, 2003, 76(2): 145-153.
DOI: 10.1016/s0014-4835(02)00278-6.
32、Moreau KL, King JA. Protein misfolding and aggregation in cataract
disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5):
273-282. DOI: 10.1016/j.molmed.2012.03.005.Moreau KL, King JA. Protein misfolding and aggregation in cataract
disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5):
273-282. DOI: 10.1016/j.molmed.2012.03.005.
33、Sprague-Piercy MA, Rocha MA, Kwok AO, et al. α-crystallins in the
vertebrate eye lens: complex oligomers and molecular chaperones[ J].
Annu Rev Phys Chem, 2021, 72: 143-163. DOI: 10.1146/annurevphyschem-090419-121428.Sprague-Piercy MA, Rocha MA, Kwok AO, et al. α-crystallins in the
vertebrate eye lens: complex oligomers and molecular chaperones[ J].
Annu Rev Phys Chem, 2021, 72: 143-163. DOI: 10.1146/annurevphyschem-090419-121428.
34、Kumar PA, Suryanarayana P, Reddy PY, et al. Modulation of alphacrystallin chaperone activity in diabetic rat lens by curcumin[ J]. Mol
Vis, 2005, 11: 561-568.Kumar PA, Suryanarayana P, Reddy PY, et al. Modulation of alphacrystallin chaperone activity in diabetic rat lens by curcumin[ J]. Mol
Vis, 2005, 11: 561-568.
35、Borchman D, Delamere NA, McCauley LA, et al. Studies on the
distribution of cholesterol, phospholipid, and protein in the human and
bovine lens[ J]. Lens Eye Toxic Res, 1989, 6(4): 703-724.Borchman D, Delamere NA, McCauley LA, et al. Studies on the
distribution of cholesterol, phospholipid, and protein in the human and
bovine lens[ J]. Lens Eye Toxic Res, 1989, 6(4): 703-724.
36、Datiles MB 3rd, Ansari RR, Yoshida J, et al. Longitudinal study of agerelated cataract using dynamic light scattering: loss of α-crystallin
leads to nuclear cataract development[ J]. Ophthalmology, 2016,
123(2): 248-254. DOI: 10.1016/j.ophtha.2015.10.007.Datiles MB 3rd, Ansari RR, Yoshida J, et al. Longitudinal study of agerelated cataract using dynamic light scattering: loss of α-crystallin
leads to nuclear cataract development[ J]. Ophthalmology, 2016,
123(2): 248-254. DOI: 10.1016/j.ophtha.2015.10.007.
37、Friedrich MG, Truscott RJ. Large-scale binding of α-crystallin to cell
membranes of aged normal human lenses: a phenomenon that can be
induced by mild thermal stress[ J]. Invest Ophthalmol Vis Sci, 2010,
51(10): 5145-5152. DOI: 10.1167/iovs.10-5261.Friedrich MG, Truscott RJ. Large-scale binding of α-crystallin to cell
membranes of aged normal human lenses: a phenomenon that can be
induced by mild thermal stress[ J]. Invest Ophthalmol Vis Sci, 2010,
51(10): 5145-5152. DOI: 10.1167/iovs.10-5261.
38、Timsina R, Mainali L. Association of alpha-crystallin with fiber cell
plasma membrane of the eye lens accompanied by light scattering and
cataract formation[ J]. Membranes, 2021, 11(6): 447. DOI: 10.3390/
membranes11060447.Timsina R, Mainali L. Association of alpha-crystallin with fiber cell
plasma membrane of the eye lens accompanied by light scattering and
cataract formation[ J]. Membranes, 2021, 11(6): 447. DOI: 10.3390/
membranes11060447.
39、Huang B, He W. Molecular characteristics of inherited congenital
cataracts[ J]. Eur J Med Genet, 2010, 53(6): 347-357. DOI: 10.1016/
j.ejmg.2010.07.001.Huang B, He W. Molecular characteristics of inherited congenital
cataracts[ J]. Eur J Med Genet, 2010, 53(6): 347-357. DOI: 10.1016/
j.ejmg.2010.07.001.
40、Shiels A , Hejtmancik JF. Molecular genetics of cataract[ J].
Prog Mol Biol Transl Sci, 2015, 134: 203-218. DOI: 10.1016/
bs.pmbts.2015.05.004.Shiels A , Hejtmancik JF. Molecular genetics of cataract[ J].
Prog Mol Biol Transl Sci, 2015, 134: 203-218. DOI: 10.1016/
bs.pmbts.2015.05.004.
41、Berry V, Ionides A, Pontikos N, et al. The genetic landscape of
crystallins in congenital cataract[ J]. Orphanet J Rare Dis, 2020, 15(1):
333. DOI: 10.1186/s13023-020-01613-3.Berry V, Ionides A, Pontikos N, et al. The genetic landscape of
crystallins in congenital cataract[ J]. Orphanet J Rare Dis, 2020, 15(1):
333. DOI: 10.1186/s13023-020-01613-3.
42、Khan AO, Aldahmesh MA, Meyer B. Recessive congenital total cataract
with microcornea and heterozygote carrier signs caused by a novel
missense CRYAA mutation (R54C)[ J]. Am J Ophthalmol, 2007,
144(6): 949-952. DOI: 10.1016/j.ajo.2007.08.005.Khan AO, Aldahmesh MA, Meyer B. Recessive congenital total cataract
with microcornea and heterozygote carrier signs caused by a novel
missense CRYAA mutation (R54C)[ J]. Am J Ophthalmol, 2007,
144(6): 949-952. DOI: 10.1016/j.ajo.2007.08.005.
43、Gerasimovich ES, Strelkov SV, Gusev NB. Some properties of three
αB-crystallin mutants carrying point substitutions in the C-terminal
domain and associated with congenital diseases[ J]. Biochimie, 2017,
142: 168-178. DOI: 10.1016/j.biochi.2017.09.008.Gerasimovich ES, Strelkov SV, Gusev NB. Some properties of three
αB-crystallin mutants carrying point substitutions in the C-terminal
domain and associated with congenital diseases[ J]. Biochimie, 2017,
142: 168-178. DOI: 10.1016/j.biochi.2017.09.008.
44、Kashani MR , Yousefi R , Akbarian M, et al. Structure, chaperone
activity, and aggregation of wild-type and R12C mutant αB-crystallins
in the presence of thermal stress and calcium ion - implications for role
of calcium in cataract pathogenesis[ J]. Biochemistry, 2016, 81(2): 122-
134. DOI: 10.1134/S0006297916020061.Kashani MR , Yousefi R , Akbarian M, et al. Structure, chaperone
activity, and aggregation of wild-type and R12C mutant αB-crystallins
in the presence of thermal stress and calcium ion - implications for role
of calcium in cataract pathogenesis[ J]. Biochemistry, 2016, 81(2): 122-
134. DOI: 10.1134/S0006297916020061.
45、Xia XY, Wu QY, An LM, et al. A novel P20R mutation in the alpha-B
crystallin gene causes autosomal dominant congenital posterior polar
cataracts in a Chinese family[ J]. BMC Ophthalmol, 2014, 14: 108.
DOI: 10.1186/1471-2415-14-108.Xia XY, Wu QY, An LM, et al. A novel P20R mutation in the alpha-B
crystallin gene causes autosomal dominant congenital posterior polar
cataracts in a Chinese family[ J]. BMC Ophthalmol, 2014, 14: 108.
DOI: 10.1186/1471-2415-14-108.
46、Panda AK, Nandi SK, Chakraborty A, et al. Differential role of
arginine mutations on the structure and functions of α-crystallin[ J].
Biochim Biophys Acta, 2016, 1860(1 Pt B): 199-210. DOI: 10.1016/
j.bbagen.2015.06.004.Panda AK, Nandi SK, Chakraborty A, et al. Differential role of
arginine mutations on the structure and functions of α-crystallin[ J].
Biochim Biophys Acta, 2016, 1860(1 Pt B): 199-210. DOI: 10.1016/
j.bbagen.2015.06.004.
47、Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin mutation in
dilated cardiomyopathy[ J]. Biochem Biophys Res Commun, 2006,
342(2): 379-386. DOI: 10.1016/j.bbrc.2006.01.154.Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin mutation in
dilated cardiomyopathy[ J]. Biochem Biophys Res Commun, 2006,
342(2): 379-386. DOI: 10.1016/j.bbrc.2006.01.154.
48、Khaleghinejad SH, Shahsavani MB, Ghahramani M, et al. Investigating
the role of double mutations R12C/P20R , and R12C/R69C on
structure, chaperone-like activity, and amyloidogenic properties of
human αB-crystallin[ J]. Int J Biol Macromol, 2023, 242(Pt 1):
124590. DOI: 10.1016/j.ijbiomac.2023.124590.Khaleghinejad SH, Shahsavani MB, Ghahramani M, et al. Investigating
the role of double mutations R12C/P20R , and R12C/R69C on
structure, chaperone-like activity, and amyloidogenic properties of
human αB-crystallin[ J]. Int J Biol Macromol, 2023, 242(Pt 1):
124590. DOI: 10.1016/j.ijbiomac.2023.124590.
49、Andley UP. Crystallins in the eye: function and pathology[ J].
Prog Retin Eye Res, 2007, 26(1): 78-98. DOI: 10.1016/
j.preteyeres.2006.10.003.Andley UP. Crystallins in the eye: function and pathology[ J].
Prog Retin Eye Res, 2007, 26(1): 78-98. DOI: 10.1016/
j.preteyeres.2006.10.003.
50、Haslbeck M, Peschek J, Buchner J, et al. Structure and function
of α-crystallins: Traversing from in vitro to in vivo[ J]. Biochim
Biophys Acta, 2016, 1860(1 Pt B): 149-166. DOI: 10.1016/
j.bbagen.2015.06.008.Haslbeck M, Peschek J, Buchner J, et al. Structure and function
of α-crystallins: Traversing from in vitro to in vivo[ J]. Biochim
Biophys Acta, 2016, 1860(1 Pt B): 149-166. DOI: 10.1016/
j.bbagen.2015.06.008.