Background: Dyop® is a dynamic optotype with a rotating and segmented visual stimulus. It can be used for visual acuity and refractive error measurement. The objective of the study was to compare refractive error measurement using the Dyop® acuity and LogMAR E charts.
Methods: Fifty subjects aged 18 or above with aided visual acuity better than 6/12 were recruited. Refractive error was measured by subjective refraction methods using the Dyop® acuity chart and LogMAR E charts and the duration of measurement compared. Thibo’s notation was used to represent the refractive error obtained for analysis.
Results: There was no significant difference in terms of spherical equivalent (M) (P=0.96) or J0 (P=0.78) and J45 (P=0.51) components measured using the Dyop® acuity and LogMAR E charts. However, subjective refraction measurement was significantly faster using the Dyop® acuity chart (t=4.46, P<0.05), with an average measurement time of 419.90±91.17 versus 452.04±74.71 seconds using the LogMAR E chart.
Conclusions: Accuracy of refractive error measurement using a Dyop® chart was comparable with use of a LogMAR E chart. The dynamic optotype Dyop® could be considered as an alternative fixation target to be used in subjective refraction.
Abstract: Four challenging and unusual retinal cases: (I) 11-year follow-up for retinal hemangioblastoma with von Hippel-Lindau (VHL) disease; (II) treatment for central serous chorioretinopathy (CSC)—observation, half does photodynamic therapy (PDT) or micropulse laser photocoagulation; (III) diagnosis and treatment for a child with optic nerve defect; (IV) the optional treatment for retinal detachment (RD) with iridolenticular choroidal coloboma, were presented and discussed by three international retinal specialists at a retinal clinical round in Fundus Diseases Center of Zhongshan Ophthalmic Center (ZOC). The discussion helps us a better understanding of the pathogenesis and managements of these four retinal diseases and their association with systemic conditions.
Abstract: Myopia prevalence is dramatically increasing in recent years and in cases in which the refractive error is greater than ?6.00 D this disease can lead to severe visual impairment as well as even blindness. Changes in visual input affect the balance between ocular growth and refractive power development. If a mismatch occurs during eye development, the severity of this error affects the degree of myopia. In different animal models of this disease, we found that spatial visual stimuli are essential for maintaining a stable refractive status and normal vision. This is evident because the effects of changes in temporal visual stimuli (e.g., flickering light) on this process depend on whether spatial information is present or absent in the visual environment. Furthermore, the frequency, wavelength and intensity of light are involved in controlling refraction development. However, the molecular mechanisms underlying light-induced refraction changes are still unclear. There is definitive evidence that dopamine (DA) is one of the regulators of this process. This retinal neurotransmitter released by dopaminergic amacrine cells appears to play an important role in vision-guided eye growth because its synthesis and release are positively associated with the light intensity and spatial stimuli impinging on the retina. We found that bright light enhances retinal DA synthesis, and attenuates form deprivation myopia (FDM) development via activation of the dopamine receptor 1 (D1R). A nonselective DA receptor agonist apomorphine (APO) inhibited FDM in dopamine receptor 2 (D2R) knockout mice. These individual similar effects of DA and APO in wildtype and D2R knockout mice suggest that D1R activation has a protective effect against myopia development. On the other hand, D2R activation instead appears to promote myopia development because either genetic D2R ablation or pharmacological inactivation of D2R also attenuates myopia development. Based on these results, we hypothesize that the visual environment regulates the retinal DA levels, which in turn affects the relative balance between D1R and D2R activation. When D1R is relatively hyperactivated, the ocular refractive status shifts towards hyperopia. In contrast, such an effect on D2Rpromotes the refractive status to shift in the opposite direction towards myopia.
Abstract: We reviewed randomized controlled trials associated with the intravitreal use of aflibercept for this article. These studies proved that aflibercept is an effective anti-vascular endothelial growth factor agent for the treatment of neovascular age-related macular degeneration (nAMD), myopic choroidal neovascularization (mCNV), diabetic macular edema (DME), and macular edema associated with retinal vein occlusion. The incidence of severe ocular or systemic complications after intravitreal administration of aflibercept was low.
Abstract: Corneal collagen-crosslinking (CXL) has been widely investigated in the adult population. There is still little available in the literature, however, on the effects of CXL in children. A review of the literature on CXL in the pediatric population is presented here, with a particular emphasis on the refractive effects. Although several studies demonstrate promising results, most studies have small sample sizes with relatively short follow-up periods. Further investigation on the effects of CXL in the pediatric population is required to better understand long-term effects.
Abstract: Diabetic retinopathy (DR) is a complex multifactorial disease and one of the leading causes of visual impairment worldwide. DR pathogenesis is still not completely understood and, even if studies performed in the past focused on microvascular dysfunction as the main event, growing body of scientific evidence has demonstrated an important role of inflammation and neurodegeneration in the onset and progression of DR. This review summarizes current literature on the role of inflammation in the pathogenesis and progression of DR. In particular, it focuses on clinical inflammatory biomarkers detectable with non-invasive retinal imaging, suggestive of a local inflammatory condition. Current available treatments are applicable only at advanced stages of disease, therefore, there is the need to detect biomarkers of subclinical or early DR that can help in DR management before irreversible damage occurs. A better understanding of inflammatory pathways involved in DR may permit to implement more specific and personalized therapeutic strategies and clinical biomarkers may be a helpful tool in the everyday clinical practice to direct the patient to the most appropriate treatment option.