Editorial
Review Article

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 
Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.
Case Records of the Zhongshan Ophthalmic Center

Case 02-2017—Discussion of clinical pearls derived from 4 challenging and unusual retinal cases

:-
 

Abstract: Four challenging and unusual retinal cases: (I) 11-year follow-up for retinal hemangioblastoma with von Hippel-Lindau (VHL) disease; (II) treatment for central serous chorioretinopathy (CSC)—observation, half does photodynamic therapy (PDT) or micropulse laser photocoagulation; (III) diagnosis and treatment for a child with optic nerve defect; (IV) the optional treatment for retinal detachment (RD) with iridolenticular choroidal coloboma, were presented and discussed by three international retinal specialists at a retinal clinical round in Fundus Diseases Center of Zhongshan Ophthalmic Center (ZOC). The discussion helps us a better understanding of the pathogenesis and managements of these four retinal diseases and their association with systemic conditions.

Original Article

A virtual model of the retina based on histological data as a tool for evaluation of the visual fields

:-
 

Background: To settle the fundamentals of a numerical procedure that relates retinal ganglion-cell density and threshold sensitivity in the visual field. The sensitivity of a generated retina and visual pathways to virtual stimuli are simulated, and the conditions required to reproduce glaucoma-type defects both in the optic-nerve head (ONH) and visual fields are explored.

Methods: A definition of selected structural elements of the optic pathways is a requisite to a translation of clinical knowledge to computer programs for visual field exploration. The program is able to generate a database of normalized visual fields. The relationship between the number of extant receptive fields and threshold sensitivity is plotted for background sensitivity and corresponding automated perimetry. A solution in two planes to the 3D distribution of axons in the ONH is proposed. Visual fields with induced damage in the optic disc are comparable in pattern and quantity to glaucomatous records.

Results: The two-level simulation of the ONH facilitates the analysis of optic-cup/retinal defects. We can generate the virtual optic pathways tailored to the age and morphology of the patient’s eye, and it is possible to reproduce glaucomatous damage by “reverse engineering” engineering. The virtual cortical model renders a quantitative relationship between visual defect and neural damage.

Conclusions: A two-level computing of the retina/optic nerve facilitates the analysis of neuroretinal defects and can be incorporated to automatic perimeters to facilitate visual field analysis.

Theme 1: Regenerative Medicine
Perspective

Tweaking the immune system as an adjuvant for the treatment of retinal degenerations

:-
 

Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.

Retina and Posterior Segment

AB040. Pou2f1/2 are required for the specification of cone photoreceptors in the developing retina

:-
 

Background: Rods and cones are critical for light detection. Although there has been considerable work done in elucidating the molecular mechanisms involved in rod development, not much is known about how the cone cell fate decision is made by the multipotent retinal progenitor cells during development. Analysis of the promoter regions of Nrl and trβ2, rod and cone differentiation factors respectively, revealed DNA binding motifs of two POU-domain containing transcription factors, Pou2f1 and Pou2f2. Preliminary experiments showed that Pou2f1/2 are expressed during the peak of cone genesis in the embryonic retina. Therefore, we hypothesize that Pou2f1/2 specify cone cell fate in the developing retina.

Methods: We used immunofluorescence and in situ hybridization to establish the spatiotemporal expression of Pou2f1/2 during retinogenesis. We performed in vivo electroporation in post-natal mice to misexpress Pou2f1/2 and used antibodies specific to proteins expressed in cones such as Rxrγ and S-opsin to count cones. Using ex vivo electroporation of embryonic retinal explants, we knocked out Pou2f1 and Pou2f2 using CRISPR/Cas9 gRNAs at the peak of cone production window. Finally, we transfected post-natal retinal explants with a combination of regulatory elements of Nrl or thrb with control backbone vector, Pou2f1 or Pou2f2 using electroporation.

Results: We found that Pou2f1/2 are expressed in retinal progenitor cells in the developing retina and subsequently in the differentiated cones. Pou2f1/2 misexpression outside the cone genesis window led to an increase in cones at the expense of rods. Pou2f1/2 indel knockouts generated by CRISPR/Cas9 gRNAs led to a decrease in cones and a converse increase in rods. Finally, we found that Pou2f1/2 activate the cis-regulatory module (CRM) of the thrb gene and repress the activity of the CRM of Nrl.

Conclusions: These results uncover novel players that establish the complex gene regulatory network for cone photoreceptor fate specification in the retinal progenitor cells. We anticipate that this work should help us devise improved replacement therapies in the future utilizing stem cells for retinal degenerative diseases such as aged-related macular degeneration (AMD) and Stargardt’s disease.

Retina and Posterior Segment

AB037. rAAV mediated PEX1 gene augmentation improves visual function in a mouse model for Zellweger spectrum disorder

:-
 

Background: Zellweger spectrum disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major handicaps faced by affected individuals, but treatment for this is supportive only. To test whether we could improve visual function in ZSD, we performed a proof-of-concept trial for PEX1 gene augmentation therapy using the Pex1-G844D mouse model, which bears the equivalent to a common human mutation. This model exhibits a gradual decline in scotopic ffERG response, an always residual photopic ffERG response, diminished visual acuity, and cone and bipolar cell anomalies.

Methods: We administered subretinal injections of a PEX1-containing viral vector (AAV8.CMV.hPEX1.HA) to 2 mouse cohorts of 5 or 9 weeks of age. A GFP-containing vector was used as a control in the contralateral eye of each animal. Efficient expression of the virus was confirmed by retinal histology/immunohistochemistry, and its ability to recover peroxisome import was confirmed in vitro. Preliminary ffERG and optokinetic (OKN) analyses were performed on a subset of animals at 8, 16, and 20 weeks after gene delivery. Final ffERG and OKN measures were performed when each cohort reached 32 weeks of age (23 or 27 weeks post injection).

Results: Preliminary ffERG and OKN analyses at 8 weeks post injection showed mildly better retinal response and visual acuity, respectively, in the PEX1-injected eyes, as did ffERG analysis when each cohort reached 25 weeks of age (16 or 20 weeks after gene delivery). This effect was more pronounced in the cohort treated at 5 weeks of age, when ffERG response is highest in Pex1-G844D mice. At 32 weeks of age, the ffERG response in the PEX1-injected eyes was double that of GFP-injected eyes, on average, though there was no change in OKN. Furthermore, in PEX1-injected eyes the photopic ffERG response improved over time, and the decline in scotopic b-wave amplitude was ameliorated compared to un-injected eyes.

Conclusions: AAV8.CMV.hPEX1.HA was subretinally delivered into the left eye of 5- and 9-week-old Pex1-G844D retina. Successful expression of the protein with no gross histologic side effect was observed. Neither the injection, nor exposure to the AAV8 capsid or the transgenic protein negatively altered the ERG or OKN response. At 5–6 months after gene delivery, therapeutic vector-treated eyes showed improved ERG compared to control eyes, on average, in both the “prevention” and “recovery” cohorts. This implies clinical potential of gene delivery to improve vision in patients with ZSD. Retinal immunohistochemistry (to visualize retinal cell types) and biochemical analyses will be performed on treated and untreated retinas, and may inform the mechanism of ERG improvement.

Psychophysics in the ophthalmological practice—II. Contrast sensitivity

:-
 

Abstract: Contrast is the differential luminance between one object and another. Contrast sensitivity (CS) quantifies the ability to detect this difference: estimating contrast threshold provides information about the quality of vision and helps diagnose and monitor eye diseases. High contrast visual acuity assessment is traditionally performed in the eye care practice, whereas the estimate of the discrimination of low contrast targets, an important complementary task for the perception of details, is far less employed. An example is driving when the contrast between vehicles, obstacles, pedestrians, and the background is reduced by fog. Many conditions can selectively degrade CS, while visual acuity remains intact. In addition to spatial CS, “temporal” CS is defined as the ability to discriminate luminance differences in the temporal domain, i.e., to discriminate information that reaches the visual cortex as a function of time. Likewise, temporal sensitivity of the visual system can be investigated in terms of critical fusion frequency (CFF), an indicator of the integrity of the magnocellular system that is responsible for the perception of transient stimulations. As a matter of fact, temporal resolution can be abnormal in neuro-ophthalmological clinical conditions. This paper aims at considering CS and its application to the clinical practice.

Original Article

Retinal damage after exposure to white light emitting diode lights at different intensities in Sprague-Dawley rats

:-
 

Background: The usage of the light emitting diode (LED) has been increasingly applied in the illumination setting and electronic equipment. However, the effect of LED lights on the retina remains unclear. In this study, we observed and analyzed the impact of white LED lights at different intensities on the function and morphology of rat retinas.

Methods: Thirty-six Sprague-Dawley rats weighing 150–180 g were randomly divided into six groups (n=6 in each group) including a normal control (NC) group, 4 white LED groups at different light intensities (4,000, 6,000, 7,000, and 10,000 lux), and an ultraviolet B (UVB) lighting group (302 nm, 1,000 μw/cm2). After 24 hours of continuous illumination, full-field flash electroretinogram (FERG) and pathological examination were performed in each group.

Results: As revealed by FERG, the impairment of retinal function gradually worsened with the increase of LED light intensity. In contrast, the UVB group had the most severe retinal function impairment. Particularly, the functional damage of rod cells and inner nuclear layer cells was the main FERG finding in each group. In the NC group, the retina had typical morphologies featured by well-defined structures, clearly visible border between the inner and outer segments, and neatly arranged inner and outer nuclear layer cells. After 24 hours of illumination, the inner and outer parts of the retina in the 4,000 lux group were still neatly arranged, along with a clear border; however, the inner and outer nuclear layers were randomly arranged, and some irregular nuclei and cells were lost. The damage of the internal and external retinal segments and the internal and external nuclear layers became more evident in the 6,000 lux group, 7,000 lux group, and 10,000 lux group. The UVB group had a more obviously disordered arrangement of inner and outer nuclear layers and loss of cells.

Conclusions: Continuous exposure to white LED light can cause structural and functional damage to rat retinas, and such damage is related to the intensity of illumination. Therefore, the risk of retinal damage should be considered during LED illumination, and proper LED illumination intensity may help to maintain eye health.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息