Background: The ex vivo model represented by mouse retinal explants in culture is a useful experimental model to investigate the molecular mechanism involved in neurovascular diseases such as diabetic retinopathy (DR). It ensures an experimental overview with more complete respect to isolate cells and reduce problems in terms of accessibility and management with respect to in vivo model. In particular, it allows the evaluation of the relationship between retinal cells in response to the typical stressors involved in DR pathogenesis.
Methods: Ex vivo retinal fragments derived from 3- to 5-week-old C57BL/6J mice. In particular, after dissection, the retina is cut into 4 separate fragments and transferred onto inserts placed with ganglion cells up. Once in culture, the explants could be treated in stress conditions typical of DR. In particular, this study protocol describes the procedure for the preparation and the culture of retinal explants with specific metabolic stressors such as high glucose (HG), advanced glycation end product (AGE), and oxidative stress (OS). In the end, this paper provides the protocols to perform molecular analyses in order to evaluate the response of retinal explants to stress and/or neuroprotective treatments.
Discussion: The cultured retinal explants represent an ex vivo experimental model to investigate the molecular mechanisms involved in neurovascular diseases such as DR. Moreover, they could be useful to test the effect of neuroprotective compounds in response to metabolic stressors in a fewer time respect to an in vivo model. In conclusion, retinal explants in culture represent a valuable experimental model to conduct further studies to better understand the pathophysiology of DR.
Background and Objective: Intraocular lymphoma (IOL) is a heterogenous category of rare malignancies that are often misdiagnosed and underrecognized. The rarity of IOL impedes clinical research and contributes to difficulty in standardizing its management. In this article we review the existing scientific literature to identify the current diagnostic tools and discuss comprehensive management of various categories of IOL. Our objective is to increase disease recognition of IOL as a whole and explore updated management options for each subtype.
Methods: PubMed and Embase were searched for publications using the terms ‘intraocular lymphoma’, ‘vitreoretinal lymphoma’, ‘uveal lymphoma’, ‘iris lymphoma’, ‘choroidal lymphoma’ and ‘ciliary body lymphoma’ published from 1990 to June 2021. Inclusion criteria were English language articles. Exclusion criteria were non-English language articles, case reports and animal studies.
Key Content and Findings: IOL often presents in middle-aged and older patients with symptoms of floaters and vision changes, but a broad array of clinical signs and symptoms are possible depending upon subtype. IOL can be subdivided by location of involvement into vitreoretinal and uveal lymphoma. These subtypes express key differences in their pathophysiology, clinical presentation, histology, prognosis, and treatment. Primary vitreoretinal lymphomas (PVRL) generally originate from B-lymphocytes and are associated with central nervous system (CNS) lymphoma. Ophthalmic findings include retinal pigment epithelium changes with yellow subretinal deposits known as “leopard spotting.” Primary uveal lymphomas generally originate from low-grade B-lymphocytes invading the choroid and carry an improved prognosis compared to vitreoretinal lymphomas. Funduscopic findings of primary uveal lymphoma include yellow to pink-yellow choroidal swelling with infiltrative subconjunctival “salmon-patch” lesions. Diagnosis for IOL is often delayed due to insidious onset, low prevalence, and tendency to mimic diseases such as uveitis. Diagnosis may be challenging, often relying on biopsy with specialized laboratory testing for confirmation of IOL. Optimal treatment regimens are currently debated among experts. Management of IOL is best coordinated in association with neuro-oncology clinicians due to the tendency for intracranial involvement.
Conclusions: IOL represents a group of multiple malignancies with distinct clinicopathologic features. Future outlook for treatment and prognosis of IOL is likely to improve with less invasive molecular diagnostic techniques and increased awareness. Clinicians should be circumspect in all patients with possible IOL and promptly refer to oncologic specialists for rapid evaluation and treatment.