Letter to the Editor
Review Article

Retinal imaging in inherited retinal diseases

:-
 

Abstract: Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].

Review Article

Crystalline retinopathy and optical coherence tomography angiography: new insights in pathogenesis

:-
 

Abstract: Optical coherence tomography angiography (OCTA) is a fast, non-invasive imaging modality that provides detailed information on retinal and choroidal vascular flow and macular structure. OCTA offers an accurate three-dimensional view of the individual retinal vascular plexuses and the choriocapillaris which facilitates the detection of the microvascular abnormalities in a variety of macular diseases. The perfusion indices (vessel density and flow index) are valuable parameters evaluated by OCTA that allow a quantitative interpretation of changes in the retinal vasculature that can reflect the severity of disease. Crystalline retinopathy encompasses a group of conditions whose distinctive feature is the presence of retinal crystals often located in the posterior pole. Select crystalline retinopathies also demonstrate retinal vascular abnormalities as well. Considering that the OCTA is a novel imaging modality and crystalline retinopathies are relatively rare conditions, there are currently few reports of OCTA findings associated with crystalline retinopathy. The advent of OCTA allows visualization of vascular and structural changes in crystalline retinopathies that are unique and cannot be appreciated on other imaging modalities, including fluorescein angiography (FA). This article reviews novel OCTA findings which provide new insights in the pathogenesis of crystalline retinopathies, including Bietti crystalline retinopathy, talc retinopathy, macular telangiectasia type 2, tamoxifen retinopathy, and Sj?gren-Larsson Syndrome maculopathy.

Review Article

Novel diagnostic imaging techniques and applications in anterior uveitis, intermediate uveitis, and scleritis

:-
 

Abstract: Uveitis can cause significant visual morbidity and often affects younger adults of working age. Anterior uveitis, or inflammation limited to the anterior chamber (AC), iris, and/or ciliary body comprises the majority of uveitis cases. Current clinical biomarkers and conventional grading scales for intraocular inflammation are mostly subjective and have only a moderate degree of interobserver reliability, and as such they have significant limitations when used in either clinical practice or research related to uveitis. In recent years, novel imaging techniques and applications have emerged that can supplement exam findings to detect subclinical disease, monitor quantitative biomarkers of disease progression or treatment effect, and provide overall a more nuanced understanding of disease entities. The first part of this review discusses automated algorithms for optical coherence tomography (OCT) image processing and analysis as a means to assess and describe intraocular inflammation with higher resolution than that afforded by conventional AC and vitreous cell ordinal grading scales. The second half of the review focuses on anterior segment OCT and OCT angiography (OCTA) in scleritis and iritis, especially with regards to their ability to directly image and characterize the pathologic structures and vasculature underlying these diseases. Finally, we briefly review experimental animal research with promising but more distant human clinical applications, including in vivo molecular microscopy of inflammatory markers and investigation of gold nanoparticles as a potential contrast agent in OCT imaging. Imaging modalities are discussed in the broader context of trends within the field of uveitis towards greater objectivity and quantifiable outcome measures and biomarkers.

Review Article

Artificial intelligence, machine learning and deep learning for eye care specialists

:-
 

Abstract: Artificial intelligence (AI) methods have become a focus of intense interest within the eye care community. This parallels a wider interest in AI, which has started impacting many facets of society. However, understanding across the community has not kept pace with technical developments. What is AI, and how does it relate to other terms like machine learning or deep learning? How is AI currently used within eye care, and how might it be used in the future? This review paper provides an overview of these concepts for eye care specialists. We explain core concepts in AI, describe how these methods have been applied in ophthalmology, and consider future directions and challenges. We walk through the steps needed to develop an AI system for eye disease, and discuss the challenges in validating and deploying such technology. We argue that among medical fields, ophthalmology may be uniquely positioned to benefit from the thoughtful deployment of AI to improve patient care.

Review Article

Evaluating visual outcomes using optical coherence tomography (OCT) in pediatric multiple sclerosis and other neuroinflammatory conditions

:-
 

Abstract: Optical coherence tomography (OCT) is a technology that is widely used to assess structural abnormalities in the retina for a variety of pediatric conditions. The introduction of this instrument has allowed for widespread access to minimally invasive standardized, reproducible quantified structural assessments of the optic nerve and retina. This has had important implications in pediatric optic neuropathies, populations in whom monitoring of disease activity is essential to making treatment decisions. OCT has had particular relevance for inflammatory optic neuropathies, as onset of an inflammatory optic neuropathy may herald the onset of a chronic inflammatory disorder of the central nervous system (CNS) such as multiple sclerosis, neuromyelitis optica spectrum disorder (aquaporin 4 antibody positive), and myelin oligodendrocyte glycoprotein (MOG) associated disorders. This paper will focus on the application of OCT technology to this group of disorders in pediatrics. After reviewing pediatric-specific anatomic and practical issues pertinent to OCT, we will review knowledge related to the use of OCT in inflammatory pediatric optic neuropathies, with a focus on structural outcomes and their correlation with functional outcome metrics.

Review Article

Pediatric uveitis: EYE-Q and metrics beyond visual acuity

:-
 

Abstract: Pediatric uveitis is an inflammatory ocular disease that can lead to sight-threatening complications. Pediatric patients have distinct challenges in the diagnosis and management of uveitis, secondary to difficulties in performing ophthalmic examinations in young children, delayed diagnosis due to lack of adherence with recommended screening schedules, medication side-effects, and increased burden of disease into adulthood. Measurement of outcomes in pediatric uveitis has traditionally relied upon the ophthalmic examination and general quality of life (QOL) measures. However, the ophthalmic examination does not take into account the impact of uveitis on a child’s QOL and general QOL measures do not adequately assess the specific effects of vision. Several vision-related quality of life (VR-QOL) instruments have been used to measure outcomes in both adults and children including: the National Eye Institute Visual Function Questionnaire (NEI VFQ-25), Vision-related Quality of Life of Children and Young People (VQoL_CYP), the Children’s Visual Function Questionnaire (CVFQ), and the Effect of Youngsters’ Eyesight on Quality of Life (EYE-Q). However, the NEI VFQ-25 is not a valid or applicable measure in children, and the VQoL_CYP and CVFQ are not uveitis specific and may not characterize disease specific burdens. The EYE-Q is the only uveitis-specific pediatric questionnaire that measures visual functioning and VR-QOL in 5–18 years old children and adolescents with uveitis. It has been shown to be a valid and reliable assessment tool in several cohorts of children with uveitis. A comprehensive assessment of the impact of uveitis on a child that includes a vision-specific measure, such as the EYE-Q, allows for better understanding of the true burden of uveitis in children. For this review, we describe traditional outcome measures in uveitis studies, general QOL measures and vision-specific measures in adults and in children.

Review Article
Review Article

Application of optical coherence tomography in hereditary, toxic and metabolic optic neuropathies

:-
 

Abstract: Hereditary, metabolic and toxic optic neuropathies cause bilateral, central vision loss and therefore can result in severe impairment in visual function. Accurate, early diagnosis is critical, as nutritional and toxic optic neuropathies may be reversible if identified early, and diagnosis of hereditary optic neuropathies can prevent unnecessary invasive workup, provide prognostic information, and allow for effective genetic counseling. Optical coherence tomography (OCT) is a valuable tool that aids in the diagnosis and prognostication of optic neuropathies as it allows for quantification of changes in the retinal ganglion cells (RGCs) and retinal nerve fiber layer (RNFL) over time. We review the characteristic clinical presentations of hereditary, metabolic and toxic optic neuropathies, with an emphasis on OCT findings.

Review Article

Optical coherence tomography in compressive lesions of the anterior visual pathway

:-
 

Abstract: Optical coherence tomography (OCT) provides a non-invasive analysis of the retina in vivo. Lesions which compress the anterior visual pathway can cause anterograde and retrograde neuro-degeneration. Retrograde structural changes to the retina can be detected by OCT. Analyzing patterns of change on OCT can guide diagnostic and treatment decisions for lesions compressing the optic nerve and chiasm to minimize loss of visual function. From our review of current literature, it is clear that thinning of both the retinal nerve fiber and ganglion cell layers (GCLs) can indicate compression. These parameters correlate with visual function loss as detected by perimetry. Furthermore, these measurements have shown to be the most reliable biomarkers to date in predicting visual recovery after treatment of these compressive lesions.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息