The purpose of this review is to provide a comprehensive and updated overview of the clinical features, imaging modalities, differential diagnosis, diagnostic criteria, and treatment options for Vogt-Koyanagi-Harada (VKH) syndrome, a rare progressive inflammatory condition characterized by bilateral granulomatous panuveitis and systemic manifestations. While the clinical features and disease course of VKH syndrome are well-characterized in the literature, its diagnosis is challenging due to a broad differential that include infectious and noninfectious causes of uveitis and rare inflammatory conditions, as well as a lack of a single diagnostic finding on exam, laboratory testing, or imaging. The evolution of the diagnostic criteria for VKH syndrome reflects the growing understanding of the disease by the ophthalmic community and advancement of imaging technology. Findings on enhanced depth imaging (EDI) optical coherence tomography (OCT) and indocyanine green angiography (ICGA) help detect subtle inflammation of the choroid and were incorporated into new diagnostic criteria developed in the last few years. There is limited research on the treatment for acute VKH, but results of studies to date support the early initiation of immunomodulatory therapy (IMT) due to a high recurrence rate and progression to chronic disease in patients treated with monotherapy with high-dose systemic corticosteroids. This review will provide an in-depth summary of recent literature on advanced imaging modality and IMT to guide clinicians in their management of patients with VKH syndrome.
Background: A variety of experimental animal models are used in basic ophthalmological research to elucidate physiological mechanisms of vision and disease pathogenesis. The choice of animal model is based on the measurability of specific parameters or structures, the applicability of clinical measurement technologies, and the similarity to human eye function. Studies of eye pathology usually compare optical parameters between a healthy and altered state, so accurate baseline assessments are critical, but few reports have comprehensively examined the normal anatomical structures and physiological functions in these models.Methods: Three cynomolgus monkeys, six New Zealand rabbits, ten Sprague Dawley (SD) rats, and BALB/c mice were examined by fundus photography (FP), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT).Results: Most retinal structures of cynomolgus monkey were anatomically similar to the corresponding human structures as revealed by FP, FFA, and OCT. New Zealand rabbits have large eyeballs, but they have large optic disc and myelinated retinal nerve fibers in their retinas, and the growth pattern of retinal vessels were also different to the human retinas. Unlike monkeys and rabbits, the retinal vessels of SD rats and BALB/c mice were widely distributed and clear. The OCT performance of them were similar with human beings except the macular.Conclusions: Monkey is a good model to study changes in retinal structure associated with fundus disease, rabbits are not suitable for studies on retinal vessel diseases and optic nerve diseases, and rats and mice are good models for retinal vascular diseases. These measures will help guide the choice of model and measurement technology and reduce the number of experimental animals required.
Abstract: Four challenging and unusual retinal cases: (I) 11-year follow-up for retinal hemangioblastoma with von Hippel-Lindau (VHL) disease; (II) treatment for central serous chorioretinopathy (CSC)—observation, half does photodynamic therapy (PDT) or micropulse laser photocoagulation; (III) diagnosis and treatment for a child with optic nerve defect; (IV) the optional treatment for retinal detachment (RD) with iridolenticular choroidal coloboma, were presented and discussed by three international retinal specialists at a retinal clinical round in Fundus Diseases Center of Zhongshan Ophthalmic Center (ZOC). The discussion helps us a better understanding of the pathogenesis and managements of these four retinal diseases and their association with systemic conditions.
Background: To settle the fundamentals of a numerical procedure that relates retinal ganglion-cell density and threshold sensitivity in the visual field. The sensitivity of a generated retina and visual pathways to virtual stimuli are simulated, and the conditions required to reproduce glaucoma-type defects both in the optic-nerve head (ONH) and visual fields are explored.
Methods: A definition of selected structural elements of the optic pathways is a requisite to a translation of clinical knowledge to computer programs for visual field exploration. The program is able to generate a database of normalized visual fields. The relationship between the number of extant receptive fields and threshold sensitivity is plotted for background sensitivity and corresponding automated perimetry. A solution in two planes to the 3D distribution of axons in the ONH is proposed. Visual fields with induced damage in the optic disc are comparable in pattern and quantity to glaucomatous records.
Results: The two-level simulation of the ONH facilitates the analysis of optic-cup/retinal defects. We can generate the virtual optic pathways tailored to the age and morphology of the patient’s eye, and it is possible to reproduce glaucomatous damage by “reverse engineering” engineering. The virtual cortical model renders a quantitative relationship between visual defect and neural damage.
Conclusions: A two-level computing of the retina/optic nerve facilitates the analysis of neuroretinal defects and can be incorporated to automatic perimeters to facilitate visual field analysis.
Abstract: Despite appropriate management of the systemic disease, patients with diabetes may develop severe forms of diabetic retinopathy that require surgery. Non-clearing vitreous haemorrhage (VH), traction retinal detachment involving the macula, combined traction and rhegmatogenous retinal detachment, progressive fibrovascular proliferation (PFP) and rubeosis with acute VH represent the main indications for surgery. Vitrectomy techniques and surgical tools have developed dramatically in the last decade in order to help the surgeon succeed in these challenging cases.
Abstract: The Handan Offspring Myopia Study (HOMS) is the first offspring eye study in a Chinese population. The study design is based on another representative study, Handan Eye Study. In this study, we found 1 diopter (D) of generational myopic shift, a weak protective effect of the outdoor activity on myopia, and a modest protective effect of the eye exercises of acupoints on myopia, among the rural children in the northern area.
Abstract: There are many advantages to understanding the genetics of human disease. Genetic markers can be used to calculate the risk of developing a disease, and elucidation of genetic risk factors can pinpoint the molecular aetiology of disease, which can facilitate the development of targeted therapies. Diabetic retinopathy (DR) is a common complication of diabetes that has a significant impact on quality of life. It has a clear genetic component, but determination of the genetic risk factors has proven difficult. To date, genome-wide studies for DR have been conducted on relatively small patient cohorts compared to other complex eye diseases and replication of genetic findings has been limited. The disease is highly heterogeneous, confounding attempts to classify patients into appropriate groups for genetic analysis and making direct comparisons between studies challenging. Future studies to determine the genetic causes of DR will need to focus on larger sample sizes, detailed phenotyping and appropriate classification of patients. Global co-operation and meta-analyses combining data from multiple studies will be critical to the discovery of genetic risk loci for DR.