Case Report

A case of infectious endophthalmitis misdiagnosed as uveitis

:-
 

Abstract: Intraocular foreign body residue following ophthalmic surgery is rare but may cause severe postoperative occult inflammation. In some cases, small foreign bodies located in the anterior chamber angle may be missed by follow-up ultrasound biomicroscopy (UBM). We report the case of an elderly female whose right eye was injured by a nail and received corneal repair surgery in our hospital. Eleven days post-surgery, we found a mobile, short, translucent, rod-shaped foreign body in the upper corner of the right eye and another in the iris root at 7 o’clock. Two months post-surgery, the patient consulted a doctor due to right eye redness, pain, and vision loss, which was ultimately shown to be associated with foreign body residue resulting in a delayed postoperative inflammatory response. The patient was cured by surgeries and active anti-inflammatory and anti-infection treatments, but the final diagnosis of the patient was infectious endophthalmitis misdiagnosed as uveitis, which worths our consideration. We also review relevant literature on the differentiation of postoperative infectious endophthalmitis from noninfectious uveitis. It’s a reminder that patients with delayed endophthalmitis after open ocular trauma should not exclude the possibility of intraocular foreign bodies. As well clinicians can distinguish infectious endophthalmitis from uveitis by needle aspiration biopsy or vitrectomy for microbial culture in order to determine the need for antibiotic treatment.

Review Article

Choriocapillaris in non-neovascular age-related macular degeneration as evaluated by optical coherence tomography angiography

:-
 

Abstract: Dramatic advances in retinal imaging technology over the last two decades have significantly improved our understanding of the natural history and pathophysiology of non-neovascular age-related macular degeneration (AMD). Currently, aside from micronutrient supplements, there are no proven treatments for non-neovascular or dry AMD. Recently, a number of pharmacological agents have been evaluated or are under evaluation for treatment of patients with end-stage dry AMD manifesting as geographic atrophy (GA). It may preferable, however, to intervene earlier in the disease before the development of irreversible loss of visual function. Earlier intervention would require a more precise understanding of biomarkers which may increase the risk of progression from early and intermediate stages to the late stage of the disease. The development of optical coherence tomography angiography (OCTA) has allowed the layers of the retinal microcirculation and choriocapillaris (CC) to be visualized and quantified. Flow deficits in the CC have been observed to increase with age, particularly centrally, and these flow deficits appear to worsen with development and progression of AMD. As such, OCTA-based CC assessment appears to be a valuable new biomarker in our assessment and risk-stratification of AMD. Alterations in the CC may also provide new insights into the pathophysiology of the disease. Enhancement of choriocapillaris function may also prove to be a target of future therapeutic strategies or as a biomarker to monitor the effectiveness of therapy. As such, CC imaging may be anticipated to be an integral tool in the management of dry AMD.

Review Article

Telemedicine diabetic retinopathy screening: rationale and practical considerations in mobile imaging with ultra-widefield photography

:-
 

Abstract: Several factors drive the need for increased efficiency in telemedicine screening programs directed toward diabetic retinopathy: continually increasing prevalence of diabetes worldwide, growing awareness among physicians and patients of the importance of early detection of retinal damage, and emerging technology in artificial intelligence that enables rapid identification of vision-threatening fundus features. In this context, optimizing workflows in teleretinopathy programs becomes a priority. Recent work has revealed opportunities for improvement in areas of logistics, in particular in finding the best way to get diabetic patients in front of screening cameras as conveniently as possible, as this improves compliance and, ultimately, achieves the widest reach for detection programs. The present review discusses particular aspects of mobile screening programs in which specialized retinal cameras are deployed in a van or similar type of vehicle so that they can reach patients anywhere in order to reduce barriers to access. The rationale for implementing such programs and practical considerations are presented, along with a view toward future expansion of screening and integration with artificial intelligence platforms. Lacking standardization of format and quality control among smartphone-linked approaches at present, translation of eye clinic-based photographic techniques to community-based screening offers a means of expanding the scope of impactful screening programs without the need for adoption of significantly new technology.

Review Article

Rapid retinal functional testing

:-
 

Abstract: The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). While it is important to screen for these diseases effectively, current eye care is not properly doing so for much of the population, resulting in unfortunate visual disability and high costs for patients. Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease. The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use, accessible to all users, and inexpensive. The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid, streamlined, and automatic administration. These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases. The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema (DME), brightness balance perception for optic nerve dysfunction and especially glaucoma, color vision testing which is a broad screening tool, and visual acuity test. Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes. Here, we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care. These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists, proper assessment and treatment.

Editorial
Review Article
Original Article

Longitudinal analysis of quantitative biomarkers using projection-resolved OCT angiography in retinal vein occlusion

:-
 

Background: To evaluate a fully automated vascular density (VD), skeletal density (SD) and fractal dimension (FD) method for the longitudinal analysis of retinal vein occlusion (RVO) eyes using projection-resolved optical coherence tomography angiography (OCTA) images and to evaluate the association between these quantitative variables and the visual prognosis in RVO eyes.

Methods: Retrospective longitudinal observational case series. Patients presenting with RVO to Creteil University Eye Clinic between October 2014 and December 2018 and healthy controls were retrospectively evaluated. Group 1 consisted of central RVO (CRVO) eyes, group 2 consisted of eyes with branch RVO (BRVO) and group 3 of healthy control eyes. OCTA acquisitions (AngioVue RTVue XR Avanti, Optovue, Inc., Freemont, CA) were performed at baseline and last follow up visit. VD, SD, and FD analysis were computed on OCTA superficial and deep vascular complex (SVC, DVC) images at baseline and final follow up using an automated algorithm. Logistic regression was performed to find if and which variable (VD, SD, FD) was predictive for the visual outcome.

Results: Forty-one eyes, of which 21 consecutive eyes of 20 RVO patients (13 CRVO in group 1, 8 BRVO in group 2), and 20 eyes of 20 healthy controls were included. At the level of SVC, VD and FD were significantly lower in RVO eyes compared to controls (P<0.0001 and P=0.0008 respectively). Best-corrected visual acuity (BCVA) at last follow-up visit was associated with baseline VD (P=0.013), FD (P=0.016), and SD (P=0.01) at the level of the SVC, as well as with baseline FD at the DVC level (P=0.046).

Conclusions: Baseline VD, SD, and FD are associated with the visual outcome in RVO eyes. These parameters seem valuable biomarkers and may help improve the evaluation and management of RVO patients.

Review Article

Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review

:-
 

Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.

Original Article

Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration

:-
 

Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application.

Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength.

Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations.

Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.

Original Article
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息