Abstract: Genetic studies have revealed that variants in genes that encode regulators of the complement system are major risk factors for the development of age-related macular degeneration (AMD). The biochemical consequences of the common polymorphism in complement factor H (Tyr402His) include increased formation of the membrane attack complex (MAC), which is deposited at the level of the inner choroid and choriocapillaris. Whereas the MAC is normally protective against foreign pathogens, it can also damage resident bystander cells when it is insufficiently regulated. Indeed, human maculas with early AMD show loss of endothelial cells in the choriocapillaris, the principal site of MAC activation. Modeling of MAC injury of choroidal endothelial cells in vitro reveals that these cells are susceptible to cell lysis by the MAC, and that unlysed cells alter their gene expression profile to undergo a pro-angiogenic phenotype that includes increased expression of matrix metalloproteinase-9. Strategies for protecting choriocapillaris endothelial cells from MAC-mediated lysis and for replacing lysed endothelial cells will be discussed.
Abstract: The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. It plays important roles in development and in the adult vascular endothelium, by modulating the angiogenic response. The endothelial-specific receptor BMP receptor Alk1 is of particular importance in the proper remodeling of the vasculature and its ligand BMP9 has been shown to be a potent inhibitor of neovascularization. Dysregulated BMP signaling has been linked to multiple vascular diseases and can lead to the abnormal angiogenesis. We therefore investigated the role of BMP9/Alk1 signaling in retinal angiogenesis, and its therapeutic implications for vascular pathologies of the eye.
Abstract: The inverted retina is a basic characteristic of the vertebrate eye. This implies that vertebrates must have a common ancestor with an inverted retina. Of the two groups of chordates, cephalochordates have an inverted retina and urochordates a direct retina. Surprisingly, recent genetics studies favor urochordates as the closest ancestor to vertebrates. The evolution of increasingly complex organs such as the eye implies not only tissular but also structural modifications at the organ level. How these configurational modifications give rise to a functional eye at any step is still subject to debate and speculation. Here we propose an orderly sequence of phylogenetic events that closely follows the sequence of developmental eye formation in extant vertebrates. The progressive structural complexity has been clearly recorded during vertebrate development at the period of organogenesis. Matching the chain of increasing eye complexity in Mollusca that leads to the bicameral eye of the octopus and the developmental sequence in vertebrates, we delineate the parallel evolution of the two-chambered eye of vertebrates starting with an early ectodermal eye. This sequence allows for some interesting predictions regarding the eyes of not preserved intermediary species. The clue to understanding the inverted retina of vertebrates and the similarity between the sequence followed by Mollusca and chordates is the notion that the eye in both cases is an ectodermal structure, in contrast to an exclusively (de novo) neuroectodermal origin in the eye of vertebrates. This analysis places cephalochordates as the closest branch to vertebrates contrary to urochordates, claimed as a closer branch by some researchers that base their proposals in a genetic analysis.
Abstract: Pediatric neuro-ophthalmology is a subspecialty within neuro-ophthalmology. Pediatric neuro-ophthalmic diseases must be considered separate from their adult counterparts, due to the distinctive nature of the examination, clinical presentations, and management choices. This manuscript will highlight four common pediatric neuro-ophthalmic disorders by describing common clinical presentations, recommended management, and highlighting recent developments. Diseases discussed include pediatric idiopathic intracranial hypertension (IIH), pseudopapilledema, optic neuritis (ON) and optic pathway gliomas (OPG). The demographics, diagnosis and management of common pediatric neuro-ophthalmic disease require a working knowledge of the current research presented herein. Special attention should be placed on the differences between pediatric and adult entities such that children can be appropriately diagnosed and treated.
Abstract: Complications of myopia have become an important public health issue with serious socio-economic burdens. Prevention and treatment are both important. The Taiwan Student Vision Care Program (TSVCP) promoted by Ministry of Education (MOE) has been carried out for 3 decades in Taiwan. The myopia prevalence has increased rapidly to a high level and therefore myopia prevention has continued to be the most important item in the program. Therefore, TSVCP aims to decrease the prevalence of myopia, in order to decrease the high myopia related blindness in the future. Recently, outdoor activity has been found to be an important protective factor for myopia and was implemented in TSVCP since 2010. Afterwards, the nationwide vision impairment rate (uncorrected vision 20/25 or less) of elementary school students declined unprecedentedly and continuously in recent years. Evidence-based protective and risk factors for myopia are now clearer. Widespread acknowledgement of myopic disease, preventing the onset of myopia, prompt diagnosis, and early treatment to control progression are all important.
Abstract: Successful management of a case of aggressive posterior retinopathy of prematurity (APROP) poorly responsive to laser therapy with intravitreal bevacizumab (IVB) is discussed. IVB is useful as rescue therapy in such cases, if given within the correct window period post laser therapy.
Background: Disruption of the microstructure in corneal stroma can lead to the loss of transparency. The lack of a characterization method for the microstructure prevents such scaffolds to be implemented in tissue transplantation. The non-invasive, three-dimensional (3D) rendering multiphoton microscopy (MPM) poses the potential to solve this problem.
Methods: MPM images and data analyses were performed with three kinds of samples with known and different quality. Isosurfaces (ISOs) were constructed for the evaluation of void volume and collagen distribution.
Results: The differences in the microstructures of these samples were revealed with clear indications and links to their behaviours in rehydration and possible transparency. According to this analysis, the scaffold with the highest void space ratio amongst the three presented the highest successful rates to be thoroughly rehydrated.
Conclusions: Such a method can be developed for assessing the quality of tissue engineered corneas, or donated corneas, and be useful as a powerful research tool in cornea related research.