Virtual Reality (VR) technology is widely recognized as a prominent technological paradigm. Its potential and promise in the domain of ophthalmology are substantial, and the evolution of VR technology has significantly influenced the contemporary landscape of ophthalmology. Numerous empirical studies have validated the practical utility of VR technology in domains such as ophthalmic disease treatment and surgery training. This paper offers a comprehensive overview of VR technology's utilization in ophthalmic disease treatment, student education, and surgery training, expands the application of VR technology in ophthalmic evaluation and disease diagnosis, discusses the challenges and limitations of VR technology in ophthalmology, and expounds on emerging trends and future developments of VR technology in ophthalmology. This endeavor aims to provide readers with an in-depth comprehension of the current status and future prospects of VR technology application in ophthalmology, with the ultimate objective of fostering more effective advancements and applications of VR technology in the realm of ophthalmology.
Virtual Reality (VR) technology is widely recognized as a prominent technological paradigm. Its potential and promise in the domain of ophthalmology are substantial, and the evolution of VR technology has significantly influenced the contemporary landscape of ophthalmology. Numerous empirical studies have validated the practical utility of VR technology in domains such as ophthalmic disease treatment and surgery training. This paper offers a comprehensive overview of VR technology's utilization in ophthalmic disease treatment, student education, and surgery training, expands the application of VR technology in ophthalmic evaluation and disease diagnosis, discusses the challenges and limitations of VR technology in ophthalmology, and expounds on emerging trends and future developments of VR technology in ophthalmology. This endeavor aims to provide readers with an in-depth comprehension of the current status and future prospects of VR technology application in ophthalmology, with the ultimate objective of fostering more effective advancements and applications of VR technology in the realm of ophthalmology.
Aims: This study describes vascular abnormalities in X-linked retinoschisis (XLRS) using fundus fluorescein angiography (FFA) and ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to better understand the disease's vascular features and impact. Methods: A retrospective cross-sectional study was conducted on 26 XLRS patients (46 eyes). A comprehensive ophthalmic examination was performed, including FFA and UWF SS-OCTA. FFA abnormalities were divided into peripheral schisis-associated and optic disc-associated types. Results: The mean age of patients was 11.3±6.5 years. Macular schisis appeared in 97.8% of eyes, peripheral schisis in 89.1%, and peripheral bullous schisis (PBS) in 67.39%. Major vascular changes identified by FFA included dendritic capillary dilation/leakage (91.3%), internal residual vessel leakage (78.3%), and capillary dropout/ischemia (71.7%). Minor changes included zonal retinal pigment epithelium (RPE) proliferation (6.5%), bridging vessels (4.4%), and capillary sheathing (4.4%). peripapillary choroidal neovascularization (PPCNV) was noted in 10.9% and situs inversus of optic disc in 13.0% of eyes. Additionally, situs inversusof optic disc and zonal RPE proliferation were novel findings. Major FFA changes correlated with broader PBS (P = 0.045) (P < 0.001) (P = 0.003). Clock hours of PBS were significant predictors for internal residual vessel leakage (OR = 0.30, P = 0.03). No significant correlation was found between gene mutation type and FFA abnormalities(P = 1.000)(P = 0.539). Conclusions: This study highlighted the significant prevalence (95.7%) of vascular abnormalities in XLRS and emphasized the importance of combining FFA with UWF SS-OCTA for comprehensive evaluation, enhancing the understanding of XLRS pathophysiology and aiding in targeted treatment approaches.
Aims: This study describes vascular abnormalities in X-linked retinoschisis (XLRS) using fundus fluorescein angiography (FFA) and ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to better understand the disease's vascular features and impact. Methods: A retrospective cross-sectional study was conducted on 26 XLRS patients (46 eyes). A comprehensive ophthalmic examination was performed, including FFA and UWF SS-OCTA. FFA abnormalities were divided into peripheral schisis-associated and optic disc-associated types. Results: The mean age of patients was 11.3±6.5 years. Macular schisis appeared in 97.8% of eyes, peripheral schisis in 89.1%, and peripheral bullous schisis (PBS) in 67.39%. Major vascular changes identified by FFA included dendritic capillary dilation/leakage (91.3%), internal residual vessel leakage (78.3%), and capillary dropout/ischemia (71.7%). Minor changes included zonal retinal pigment epithelium (RPE) proliferation (6.5%), bridging vessels (4.4%), and capillary sheathing (4.4%). peripapillary choroidal neovascularization (PPCNV) was noted in 10.9% and situs inversus of optic disc in 13.0% of eyes. Additionally, situs inversusof optic disc and zonal RPE proliferation were novel findings. Major FFA changes correlated with broader PBS (P = 0.045) (P < 0.001) (P = 0.003). Clock hours of PBS were significant predictors for internal residual vessel leakage (OR = 0.30, P = 0.03). No significant correlation was found between gene mutation type and FFA abnormalities(P = 0.539). Conclusions: This study highlighted the significant prevalence (95.7%) of vascular abnormalities in XLRS and emphasized the importance of combining FFA with UWF SS-OCTA for comprehensive evaluation, enhancing the understanding of XLRS pathophysiology and aiding in targeted treatment approaches.
Age stands as a primary risk factor for diseases and disabilities among the elderly. To effectively assess the underlying aging processes, accurate measures of biological age and rates of aging across multiple levels of aging features are essential. Biological age derives from physiological assessments of systems and organs. It has emerged as a superior predictor of age-related diseases and mortality compared to chronological age. Recent advancements in machine learning have catalyzed the development of sophisticated models capable of quantitatively characterizing biological aging with different types of data. This review explores the machine learning models in advancing our understanding of biological aging, highlighting the potential of these innovative approaches to facilitate aging research and personalized healthcare strategies.
Age stands as a primary risk factor for diseases and disabilities among the elderly. To effectively assess the underlying aging processes, accurate measures of biological age and rates of aging across multiple levels of aging features are essential. Biological age derives from physiological assessments of systems and organs. It has emerged as a superior predictor of age-related diseases and mortality compared to chronological age. Recent advancements in machine learning have catalyzed the development of sophisticated models capable of quantitatively characterizing biological aging with different types of data. This review explores the machine learning models in advancing our understanding of biological aging, highlighting the potential of these innovative approaches to facilitate aging research and personalized healthcare strategies.
Purpose: To identify plasma proteins that are causally related to primary open-angle glaucoma (POAG) for potential therapeutic targeting. Methods: Summary statistics of plasma protein quantitative trait loci (pQTL) were derived from two extensive genome-wide analysis study (GWAS) datasets and one systematic review, with over 100 thousand participants covering thousands of plasma proteins. POAG data were sourced from the largest FinnGen study, comprising 8,530 DR cases and 391,275 European controls. A two-sample MR analysis, supplemented by bidirectional MR, Bayesian co-localization analysis, and phenotype scanning, was conducted to examine the causal relationships between plasma proteins and POAG. The analysis was validated by identifying associations between plasma proteins and POAG-related traits, including intraocular pressure (IOP), retinal nerve fibre layer (RNFL), and ganglion cell and inner plexiform layer (GCIPL). By searching druggable gene lists, the ChEMBL database, and the ClinicalTrials.gov database, the druggability and clinical development activity of the identified proteins were systematically evaluated. Results: Eighteen proteins were identified with significant associations with POAG risk after multiple comparison adjustments. The ORs per standard deviation increase in protein levels ranged from 0.39 (95% CI: 0.24–0.62; P = 7.70×10-5) for phospholipase C gamma 1 (PLCG1) to 1.29 (95% CI: 1.16–1.44; P = 6.72×10-6) for nidogen-1 (NID1). Bidirectional MR indicated that reverse causality did not interfere with the results of the main MR analyses. Five proteins exhibited strong co-localization evidence (PH4 ≥ 0.8): protein sel-1 homolog 1 (SEL1L), tyrosine-protein kinase receptor UFO (AXL), nidogen-1 (NID1) and FAD-linked sulfhydryl oxidase ALR (GFER) were negatively associated with POAG risk, while roundabout homolog 1 (ROBO1) showed a positive association. The phenotype scanning did not reveal any confounding factors between pQTLs and POAG. Further, validation analyses identified nine proteins causally related to POAG traits, with five proteins including interleukin-18 receptor 1 (IL18R1), interleukin-1 receptor type 1 (IL1R1), phospholipase C gamma 1 (PLCG1), ribonuclease pancreatic (RNASE1), serine protease inhibitor Kazal-type 6 (SPINK6) revealing consistent directional associations. In addition, 18 causal proteins were highlighted for their druggability, of which 5 proteins are either already approved drugs or in clinical trials and 13 proteins are novel drug targets. Conclusions: This study identifies 18 plasma proteins as potential therapeutic targets for POAG, particularly emphasizing the role of genomic and proteomic integration in drug discovery. Future experimental and clinical studies should be conducted to validate the efficacy of these proteins and to conduct more comprehensive proteomic explorations, thus taking a significant leap toward innovative POAG treatments.
Purpose: To identify plasma proteins that are causally related to primary open-angle glaucoma (POAG) for potential therapeutic targeting. Methods: Summary statistics of plasma protein quantitative trait loci (pQTL) were derived from two extensive genome-wide analysis study (GWAS) datasets and one systematic review, with over 100 thousand participants covering thousands of plasma proteins. POAG data were sourced from the largest FinnGen study, comprising 8,530 DR cases and 391,275 European controls. A two-sample MR analysis, supplemented by bidirectional MR, Bayesian co-localization analysis, and phenotype scanning, was conducted to examine the causal relationships between plasma proteins and POAG. The analysis was validated by identifying associations between plasma proteins and POAG-related traits, including intraocular pressure (IOP), retinal nerve fibre layer (RNFL), and ganglion cell and inner plexiform layer (GCIPL). By searching druggable gene lists, the ChEMBL database, and the ClinicalTrials.gov database, the druggability and clinical development activity of the identified proteins were systematically evaluated. Results: Eighteen proteins were identified with significant associations with POAG risk after multiple comparison adjustments. The ORs per standard deviation increase in protein levels ranged from 0.39 (95% CI: 0.24–0.62; P = 7.70×10-5) for phospholipase C gamma 1 (PLCG1) to 1.29 (95% CI: 1.16–1.44; P = 6.72×10-6) for nidogen-1 (NID1). Bidirectional MR indicated that reverse causality did not interfere with the results of the main MR analyses. Five proteins exhibited strong co-localization evidence (PH4 ≥ 0.8): protein sel-1 homolog 1 (SEL1L), tyrosine-protein kinase receptor UFO (AXL), nidogen-1 (NID1) and FAD-linked sulfhydryl oxidase ALR (GFER) were negatively associated with POAG risk, while roundabout homolog 1 (ROBO1) showed a positive association. The phenotype scanning did not reveal any confounding factors between pQTLs and POAG. Further, validation analyses identified nine proteins causally related to POAG traits, with five proteins including interleukin-18 receptor 1 (IL18R1), interleukin-1 receptor type 1 (IL1R1), phospholipase C gamma 1 (PLCG1), ribonuclease pancreatic (RNASE1), serine protease inhibitor Kazal-type 6 (SPINK6) revealing consistent directional associations. In addition, 18 causal proteins were highlighted for their druggability, of which 5 proteins are either already approved drugs or in clinical trials and 13 proteins are novel drug targets. Conclusions: This study identifies 18 plasma proteins as potential therapeutic targets for POAG, particularly emphasizing the role of genomic and proteomic integration in drug discovery. Future experimental and clinical studies should be conducted to validate the efficacy of these proteins and to conduct more comprehensive proteomic explorations, thus taking a significant leap toward innovative POAG treatments.
Myopia, a common cause of visual impairment, together with the global decline in physical fitness and increasing prevalence of childhood obesity, has become a prominent global health problem. The beneficial effect of increasing the time of outdoor activities on the incidence of myopia and physical well-being in children has been widely recognized. However, in countries with highly competitive education systems, such as China, parents and school administrators may be reluctant to increase their children's time for extracurricular outdoor activities for fear of affecting their academic performance. Therefore, it is crucial to accurately assess the role of after-school outdoor activities in preventing and controlling myopia, as well as in promoting the physical and mental development of adolescents. Schools and families should be encouraged to collaboratively support children’s engagement in outdoor activities to foster their healthy growth.
Given the dual benefits of outdoor activities—improving visual health and promoting overall physical and mental well-being—it is essential to encourage schools and families to work together to support children's engagement in such activities. By doing so, it is hoped that a balanced environment can be created, one that values both academic achievement and healthy development. Policymakers, educators, and parents must recognize the long-term advantages of integrating outdoor activities into children's daily lives, as this approach can help alleviate the burden of myopia, enhance physical fitness, and support emotional and cognitive development. Ultimately, fostering a culture that views outdoor activities as an essential component of education and health will be key to ensuring the well-rounded development of future generations.
Myopia, a common cause of visual impairment, together with the global decline in physical fitness and increasing prevalence of childhood obesity, has become a prominent global health problem. The beneficial effect of increasing the time of outdoor activities on the incidence of myopia and physical well-being in children has been widely recognized. However, in countries with highly competitive education systems, such as China, parents and school administrators may be reluctant to increase their children's time for extracurricular outdoor activities for fear of affecting their academic performance. Therefore, it is crucial to accurately assess the role of after-school outdoor activities in preventing and controlling myopia, as well as in promoting the physical and mental development of adolescents. Schools and families should be encouraged to collaboratively support children’s engagement in outdoor activities to foster their healthy growth.
Given the dual benefits of outdoor activities—improving visual health and promoting overall physical and mental well-being—it is essential to encourage schools and families to work together to support children's engagement in such activities. By doing so, it is hoped that a balanced environment can be created, one that values both academic achievement and healthy development. Policymakers, educators, and parents must recognize the long-term advantages of integrating outdoor activities into children's daily lives, as this approach can help alleviate the burden of myopia, enhance physical fitness, and support emotional and cognitive development. Ultimately, fostering a culture that views outdoor activities as an essential component of education and health will be key to ensuring the well-rounded development of future generations.
Objective: To investigate the lifestyle and myopia among primary school students in urban areas of Fujian with the context of myopia prevention and control measures, aiming to provide scientific evidence for identifying high-risk myopia population and formulating effective intervention strategies. Methods: A cross-sectional study was conducted from October to November 2023, enrolling 811 fourth-grade students from three primary schools in three cities across Fujian. Personal information and lifestyle-related pattern were collected using customized questionnaire. Participants underwent comprehensive ophthalmic assessments including distance visual acuity tests and refractive examinations. Logistic regression analysis was used to assess the impact of lifestyle on the onset of myopia. Results: The prevalence of myopia among fourth-grade students in urban primary schools in Fujian was 46.4%. Only 25.8% students engaged in outdoor activities for more than 2 hours daily, while63.3% participated in outdoor activities during class breaks. Multivariate Logistic regression analysis revealed that outdoor activities during class breaks (OR= 0.646 [95% confidence interval(CI): 0.473-0.881], P = 0.006) and daily time spent outdoors (2-3 hours, OR=0.682 [95%CI:0.466-0.993], P=0.047; more than 3 hours, OR=0.403 [95%CI: 0.192-0.796], P = 0.01) were independent protective factors against myopia. Lifestyle significantly enhanced the predictive performance for myopia (P = 0.01). Additionally, parental myopia (one parent with myopia, OR=2.247 [95%CI: 1.612- 3.145], P < 0.001; both parents with myopia, OR=4.824 [95%CI: 3.262-7.204], P < 0.001) emerged as a key risk factor for myopia. Conclusion: There is considerable scope for improving the lifestyle of primary school students in urban areas of Fujian. Lifestyle is strongly associated with myopia onset, highlighting the need for schools and families to actively encourage students to engage in more outdoor activities and take breaks outdoors to prevent and control myopia. Students with parents, especially both parents, having myopia should be considered as a key target group for myopia prevention efforts.
Objective: To investigate the lifestyle and myopia among primary school students in urban areas of Fujian with the context of myopia prevention and control measures, aiming to provide scientific evidence for identifying high-risk myopia population and formulating effective intervention strategies. Methods: A cross-sectional study was conducted from October to November 2023, enrolling 811 fourth-grade students from three primary schools in three cities across Fujian. Personal information and lifestyle-related pattern were collected using customized questionnaire. Participants underwent comprehensive ophthalmic assessments including distance visual acuity tests and refractive examinations. Logistic regression analysis was used to assess the impact of lifestyle on the onset of myopia. Results: The prevalence of myopia among fourth-grade students in urban primary schools in Fujian was 46.4%. Only 25.8% students engaged in outdoor activities for more than 2 hours daily, while63.3% participated in outdoor activities during class breaks. Multivariate Logistic regression analysis revealed that outdoor activities during class breaks (OR= 0.646 [95% confidence interval(CI): 0.473-0.881], P = 0.006) and daily time spent outdoors (2-3 hours, OR=0.682 [95%CI:0.466-0.993], P=0.047; more than 3 hours, OR=0.403 [95%CI: 0.192-0.796], P = 0.01) were independent protective factors against myopia. Lifestyle significantly enhanced the predictive performance for myopia (P = 0.01). Additionally, parental myopia (one parent with myopia, OR=2.247 [95%CI: 1.612- 3.145], P < 0.001; both parents with myopia, OR=4.824 [95%CI: 3.262-7.204], P < 0.001) emerged as a key risk factor for myopia. Conclusion: There is considerable scope for improving the lifestyle of primary school students in urban areas of Fujian. Lifestyle is strongly associated with myopia onset, highlighting the need for schools and families to actively encourage students to engage in more outdoor activities and take breaks outdoors to prevent and control myopia. Students with parents, especially both parents, having myopia should be considered as a key target group for myopia prevention efforts.
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.
Meibomian gland dysfunction (MGD) manifests through two main clinical presentations, characterized by the meibomian gland (MG) ductal obstruction or acinar dropout. While previous research has predominantly associated MGD pathogenesis with hyperkeratinization-related MG ductal obstruction and subsequent acinar atrophy, recent cases have shown significant functional acinar loss in the absence of apparent ductal keratinization or blockage. The deterioration of either MG obstruction or dropout exacerbates the condition of the other, suggesting an independent yet interconnected relationship that perpetuates the vicious cycle of MGD. Understanding the distinct pathological features of MG obstruction and dropout is crucial for delineating their etiology and identifying targeted therapeutic strategies. This review explores the nuanced interrelations of MG obstruction and dropout, elucidating potential pathological mechanisms to establish a foundation for early MGD diagnosis and intervention.
Meibomian gland dysfunction (MGD) manifests through two main clinical presentations, characterized by the meibomian gland (MG) ductal obstruction or acinar dropout. While previous research has predominantly associated MGD pathogenesis with hyperkeratinization-related MG ductal obstruction and subsequent acinar atrophy, recent cases have shown significant functional acinar loss in the absence of apparent ductal keratinization or blockage. The deterioration of either MG obstruction or dropout exacerbates the condition of the other, suggesting an independent yet interconnected relationship that perpetuates the vicious cycle of MGD. Understanding the distinct pathological features of MG obstruction and dropout is crucial for delineating their etiology and identifying targeted therapeutic strategies. This review explores the nuanced interrelations of MG obstruction and dropout, elucidating potential pathological mechanisms to establish a foundation for early MGD diagnosis and intervention.
Aims: Divided nevus of the eyelid is a congenital pigmented nevus that impacts eyelid function and aesthetics. While surgical excision and laser ablation are current treatment options, they have limitations when dealing with large lesions. This study aims to investigate the efficacy and safety of carbon dioxide (CO2) laser excision treatment for divided nevus of the eyelid. Methods: This retrospective study included 10 patients (5 males, 5 females) with a mean age of 23.7 years (9-54 years). All underwent CO2 laser excision and were followed up for 12 months. Treatment outcomes were assessed through clearance and recurrence rates, evaluated using digital photography. Postoperative complications were closely monitored throughout the 12-month follow-up period. Patient satisfaction was assessed using a comprehensive questionnaire. Results:All patients presented with unilateral divided nevus of the eyelid, with lesion diameters ranging from 25 to 50 mm and heights ranging from 0.3 to 6 mm (mean: 3.93 mm). Patients received between 1 and 5 laser treatment sessions. At the 12-month follow-up, a 100% clearance rate was achieved, with no recurrence observed in any patient. All patients maintained a continuous eyelid margin with acceptable irregularity. Complications were minimal, with partial eyelash loss in 8 patients, hyperpigmentation in 2 patients, and mild upper eyelid trichiasis in 1 patient. No severe complications, such as ectropion, eyelid margin notching, corneal erosion, or significant scar hypertrophy, were reported. All patients expressed being "very satisfied" with the functional and cosmetic outcomes in a questionnaire. Conclusions: CO2 laser excision offers a simple, precise, and effective treatment approach for divided nevus of the eyelid. This innovative technique simplifies the treatment process, achieves excellent cosmetic outcomes, and eliminates the need for skin grafting, making it a promising option for the management of large divided nevus.
Aims: Divided nevus of the eyelid is a congenital pigmented nevus that impacts eyelid function and aesthetics. While surgical excision and laser ablation are current treatment options, they have limitations when dealing with large lesions. This study aims to investigate the efficacy and safety of carbon dioxide (CO2) laser excision treatment for divided nevus of the eyelid. Methods: This retrospective study included 10 patients (5 males, 5 females) with a mean age of 23.7 years (9-54 years). All underwent CO2 laser excision and were followed up for 12 months. Treatment outcomes were assessed through clearance and recurrence rates, evaluated using digital photography. Postoperative complications were closely monitored throughout the 12-month follow-up period. Patient satisfaction was assessed using a comprehensive questionnaire. Results: All patients presented with unilateral divided nevus of the eyelid, with lesion diameters ranging from 25 to 50 mm and heights ranging from 0.3 to 6 mm (mean: 3.93 mm). Patients received between 1 and 5 laser treatment sessions. At the 12-month follow-up, a 100% clearance rate was achieved, with no recurrence observed in any patient. All patients maintained a continuous eyelid margin with acceptable irregularity. Complications were minimal, with partial eyelash loss in 8 patients, hyperpigmentation in 2 patients, and mild upper eyelid trichiasis in 1 patient. No severe complications, such as ectropion, eyelid margin notching, corneal erosion, or significant scar hypertrophy, were reported. All patients expressed being "very satisfied" with the functional and cosmetic outcomes in a questionnaire. Conclusions: CO2 laser excision offers a simple, precise, and effective treatment approach for divided nevus of the eyelid. This innovative technique simplifies the treatment process, achieves excellent cosmetic outcomes, and eliminates the need for skin grafting, making it a promising option for the management of large divided nevus.
Objective: Evidence pertaining to the associations between hyperuricemia and diabetic microvascular complications is limited and inconclusive. In this study, we aimed to prospectively investigate the independent associations of hyperuricemia and retinopathy, nephropathy and neuropathy in individuals with type 2 diabetes mellitus (T2DM). Methods: This cohort study enrolled 25,094 participants from UK Biobank with T2DM and without microvascular complications at baseline. Hyperuricemia was defined as serum uric acid (SUA) higher than 420 μmol/L. The incidence of diabetic microvascular complications was identified from hospital inpatient records that were coded according to the International Classification of Diseases (ICD)-10 coding system. Multivariable adjusted Cox proportional hazards regression models were used to calculate adjusted hazard ratios (aHR). Results: Among all participants, 3,844 (15.3%) were classified as having hyperuricemia at baseline. During a median follow-up of 14.0 years, 555 (14.4%) individuals with hyperuricemia developed diabetic microvascular complications, compared with 12.6% of individuals without hyperuricemia (P=0.002). In the multivariable-adjusted model accounted for socioeconomic status, lifestyle factors, physical and biochemical measurements, and medication use, when compared with individuals of T2DM who had a normal SUA level, those with hyperuricemia had an 82.9% higher risk of developing diabetic nephropathy (95%CI: 1.41-2.38, P<0.001), and a 30.2% higher risk of diabetic neuropathy (95%CI: 1.06-1.60, P=0.011). However, the association between hyperuricemia and diabetic retinopathy was not statistically significant (aHR:1.070, 95%CI: 0.94-1.22, P=0.320). Conclusions: Hyperuricemia was independently associated with diabetic nephropathy and neuropathy but not retinopathy in individuals with T2DM. These findings underscore the importance of monitoring SUA level in prevention of certain microvascular complications.
Objective: Evidence pertaining to the associations between hyperuricemia and diabetic microvascular complications is limited and inconclusive. In this study, we aimed to prospectively investigate the independent associations of hyperuricemia and retinopathy, nephropathy and neuropathy in individuals with type 2 diabetes mellitus (T2DM). Methods: This cohort study enrolled 25,094 participants from UK Biobank with T2DM and without microvascular complications at baseline. Hyperuricemia was defined as serum uric acid (SUA) higher than 420 μmol/L. The incidence of diabetic microvascular complications was identified from hospital inpatient records that were coded according to the International Classification of Diseases (ICD)-10 coding system. Multivariable adjusted Cox proportional hazards regression models were used to calculate adjusted hazard ratios (aHR). Results: Among all participants, 3,844 (15.3%) were classified as having hyperuricemia at baseline. During a median follow-up of 14.0 years, 555 (14.4%) individuals with hyperuricemia developed diabetic microvascular complications, compared with 12.6% of individuals without hyperuricemia (P=0.002). In the multivariable-adjusted model accounted for socioeconomic status, lifestyle factors, physical and biochemical measurements, and medication use, when compared with individuals of T2DM who had a normal SUA level, those with hyperuricemia had an 82.9% higher risk of developing diabetic nephropathy (95%CI: 1.41-2.38, P<0.001), and a 30.2% higher risk of diabetic neuropathy (95%CI: 1.06-1.60, P=0.011). However, the association between hyperuricemia and diabetic retinopathy was not statistically significant (aHR:1.070, 95%CI: 0.94-1.22, P=0.320). Conclusions: Hyperuricemia was independently associated with diabetic nephropathy and neuropathy but not retinopathy in individuals with T2DM. These findings underscore the importance of monitoring SUA level in prevention of certain microvascular complications.