高度近视(high myopia,HM)作为一种特殊类型的屈光型眼病,不仅会导致进行性、退行性眼底改变,其视神经损伤的患病率也很高。青光眼是全球范围内最常见的一种不可逆致盲性眼病,原发性开角型青光眼(primary open-angle glaucoma,POAG)是最常见的青光眼类型。近年来的研究发现HM与POAG的病理改变存在相似之处。由于HM眼底改变与早期POAG眼底改变容易混淆,HM患者早期发现POAG对延缓或阻止疾病进展很重要。HM患者长期随访不仅要观察黄斑病变,视神经形态与结构改变的观察也不容忽视。
As a special type of refractive eye disease, high myopia (HM) not only causes progressive and degenerative fundus changes, but also has a high prevalence of optic nerve damage. Glaucoma is the most common form of irreversible blinding eye diseases worldwide, among which, primary open-angle glaucoma (POAG) is the most common type. In recent studies, HM is found to have similarities on pathological changes as that of POAG. And HM fundus changes are easily confused with early stage POAG fundus changes; thus, the early detection of POAG on HM patients is highly important on disease deferment or prevention of disease progression. Macular degeneration as well as optic nerve morphology and structural changes are to be observed in the long-term follow-up for HM patients.
随着微创玻璃体切除术(pars plana vitrectomy,PPV)的广泛开展和手术技术的提高,患者对手术后视觉质量的要求越来越高。白内障是PPV术后最常见并发症,而具有玻璃体切除史的白内障患者屈光变异大,预测难度高。本文综述了生物测量误差、人工晶状体屈光力计算公式选择以及有效晶状体位置预测等影响有玻璃体切除手术史的白内障患者术后屈光误差的主要因素,旨在为降低这一类特殊人群白内障术后屈光误差提供参考。
With the widespread application of minimally invasive vitrectomy and the improvement of surgical techniques, the demands of patients for better postoperative visual quality are increasing. Cataract is the most common complication after vitrectomy, whereas the refractive outcomes of cataract patients with prior vitrectomy are viable and difficult to predict. In this paper, the main factors affecting postoperative refractive error of cataract patients with a history of vitrectomy, such as biometric error, selection of intraocular lens calculation formulas and prediction of effective lens position, were reviewed in order to provide reference for reducing postoperative refractive error of this special group of cataract patients.
先天性晶状体脱位(congenital ectopia lentis, CEL)是一种罕见的遗传相关性疾病,其主要临床特征是晶状体悬韧带先天性发育异常,导致晶状体偏离正常解剖位置。随着病情的进展,CEL可引起高度屈光不正甚至弱视外,还可能导致继发性青光眼和视网膜脱离等严重的并发症。目前,手术仍是改善CEL患儿视觉质量及防治并发症的主要手段。常用的手术方式包括晶状体摘除术、前房型人工晶状体(intraocular lens, IOL)植入术、囊袋支撑装置联合IOL植入术及经巩膜IOL固定术等,这些手术方式各具特点,但目前最佳手术方式仍未有定论。既往大量文献表明,手术能够显著改善CEL患儿视力,但随着眼球的生长发育,CEL患儿术后屈光状态常出现近视漂移。此外,术后并发症如缝线暴露,IOL瞳孔夹持、IOL脱位、视网膜脱离等仍有可能发生,需要长期的严密随访。这些因素都使得CEL的治疗具有挑战性。为此,文章就CEL的手术方式、视力预后、术后屈光变化及术后并发症进行综述,旨在为该疾病的临床诊断及治疗提供更为全面和深入的理解。
Congenital ectopia lentis (CEL) is a rare genetic disorder characterized by the displacement of the lens from its normal anatomical position due to abnormalities in the lens zonular. As the progression of the disease, CEL can lead to high refractive error, even amblyopia, as well as other serious complications such as secondary glaucoma and retinal detachment. Currently, surgical intervention remains the primary method to improve the visual quality and prevent complications in children with CEL.Common surgical options include lens extraction, anterior chamber intraocular lens (IOL) implantation, IOL implantation combined with capsular tension devices, and transcleral fixation of IOL. Each surgical approach has its own characteristics, but there is currently no consensus on the best surgical method. Previous literature has shown that surgery can significantly improve vision in children with CEL; however, due to the growth of the eye, postoperative refractive status often experiences myopic shift. Additionally, complications such as suture exposure, IOL pupil capture, IOL dislocation, and retinal detachment may still occur, necessitating long-term close follow-up. These factors make the treatment of CEL challenging. This article reviews the surgical approaches, visual prognosis, postoperative refractive changes, and postoperative complications associated with CEL, aiming to provide a more comprehensive and in-depth understanding for the clinical diagnosis and treatment of this disease.
糖基化是一种重要的蛋白质翻译后修饰,通常发生在内质网和高尔基体的特定位置。N-糖基化和O-糖基化是最常见的糖基化修饰类型。与其他翻译后修饰相比,糖基化具有独特的生物学意义,包括结构的复杂多样性,生物功能的重要性以及进化上的保守性。糖基化修饰对于蛋白质稳定性、细胞黏附与识别、细胞内信号传导和表观遗传学具有重要影响,从而参与调节细胞生物学和发病机制。近年来,越来越多的研究揭示了糖基化参与眼部疾病的发生和发展,包括眼表疾病、圆锥角膜、青光眼、年龄相关性黄斑变性、视网膜色素变性、糖尿病视网膜病变等。眼部蛋白糖基化异常可通过诱发新生血管形成、炎症反应、氧化应激、异常免疫应答等改变细胞的结构与功能,进而影响各种眼病的发生发展。通过深入研究糖基化在不同眼部疾病中的作用机制,可以为相关眼部疾病的早期诊断和治疗提供新的思路和方法。现综述糖基化在眼部疾病的研究进展,以探究调控蛋白质糖基化对眼部疾病的诊疗意义。
Glycosylation is an important post-translational modification of proteins that usually occurs at specific locations within the endoplasmic reticulum and Golgi apparatus. N-glycosylation and O-glycosylation are the most common types of glycosylation modifications. Compared to other post-translational modifications, glycosylation has unique biological significance, including structural complexity and diversity, crucial biological functions, and evolutionary conservation. Glycosylation modifications significantly impact protein stability, cell adhesion and recognition, intracellular signal transduction, and epigenetics, thereby regulating cellular biology and pathogenesis. In recent years, an increasing amount of research has revealed the involvement of glycosylation in the occurrence and development of ocular diseases, including ocular surface diseases, keratoconus, glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Abnormal glycosylation of ocular proteins can induce changes in cell structure and function through mechanisms such as neovascularization, inflammatory response, oxidative stress, and abnormal immune response, thereby influencing the occurrence and development of various eye diseases. By deeply studying the mechanisms of glycosylation in different ocular diseases, new insights and methods can be provided for the early diagnosis and treatment of related ocular diseases. This review summarizes the research progress of glycosylation in ocular diseases to explore the diagnostic and therapeutic significance of regulating protein glycosylation in ocular diseases.
近年来,眼部电流刺激(electrical stimulation,ES)在不同方向的研究中逐渐揭示了其在多种视网膜疾病中的潜在治疗价值。其中,经角膜电刺激(transcorneal electrical stimulation,TES)作为一种非侵入性的治疗方法,能对视网膜、视神经、眼底血管及其相关结构产生积极的影响。TES能够改善视力,在保护感光细胞和减缓疾病进展方面显示出积极效果,提高患者的生存质量,还能够在不损伤眼球的情况下调节大脑中的神经元活动,为视网膜疾病的治疗提供一种新的选择。该文对近年来TES在视网膜色素变性(retinitis pigmentosa,RP)、年龄相关性黄斑变性(age-related macular degeneration,AMD)、视网膜血管病、青光眼以及视神经病变等疾病中的应用研究进行了综述。研究发现,TES治疗是一种安全且无需手术的辅助治疗工具,具有广泛的应用前景。该文旨在为临床医师提供一个全面的TES研究概述,并深入探讨其在眼科学领域的潜在应用价值。然而,TES治疗的具体机制仍需进一步探讨,以便更好地应用于临床实践。同时,未来研究还应关注TES与其他治疗方法相结合的效果,以期为患者提供更多有效的治疗选择。
In recent years, electrical stimulation of the eye (ES) has gradually revealed its potential therapeutic value in a variety of retinal diseasesin different directions. Among them, transcorneal electrical stimulation (TES), as a non-invasive treatment, can have a positive effect on the retina, optic nerve, fundus vessels and related structures. TES can improve vision, show positive effects in protecting photoreceptor cells and slowing disease progression, improve the quality of life of patients, and can regulate neuronal activity in the brain without damaging the eyeball, providing a new option for the treatment of retinal diseases. The research on the application on TES on retinitis pigementosa (RP), age-related macular degeneration (AMD), retinal angiopathy, glaucoma and optic neuropathy are reviewed in this article. It is found in the study that TES therapy is a safe and surgery-free adjuvant therapy tool, and has a wide application prospect. The purpose of this article is to provide clinicians with a comprehensive overview of TES research,and to explore its potential application value in the field of ophthalmology. However, the specific mechanism of TES therapy still needs to be further explored in order to better apply in clinical practice. At the same time, future studies should also focus on the effect of combining TES with other treatment methods, in order to provide more effective treatment options for patients.
甲状腺相关眼病(thyroid-associated ophthalmopathy,TAO),又称Graves眼病,是与甲状腺疾病密切相关的一种器官特异性自身免疫性疾病。眼球突出是TAO的主要临床表现之一,也是临床上多数患者就诊的原因。眼球突出一方面会影响美观,另一方面可因眼睑闭合不全导致暴露性角膜炎或因眼眶压力增大导致压迫性视神经病变。眼眶减压术用于重度TAO已有过百年历史,从最早经外眦皮肤切开的传统外部切口入路进行骨性眼眶减压及脂肪减压到内镜下经鼻入路眼眶减压术,其安全性和有效性均已得到肯定。术后复视是眼眶减压术常见的并发症。近年来,随着眼眶减压术的发展,其越来越多地用于美容目的以矫正眼球突出。然而术后的新发复视仍然是困扰众多相关眼科医疗工作者的难题。近年来,多项研究对术后新发复视的相关因素进行了探讨,并由此对眼眶减压术进行改良,在对术后新发复视的减少方面取得不同程度的进展。该文对眼眶减压术后新发复视的研究进展进行综述,旨在促进专科医生更精准地开展TAO的手术,进而提高手术患者术后的生活质量及手术满意度。
Thyroid-associated ophthalmopathy (TAO), known as Graves’orbitopathy, is an organ specific autoimmune disease closely related to thyroid diseases. Exophthalmos is one of the main clinical manifestations of thyroid related ophthalmopathy and is also the reason for most patients seeking medical atention in clinical practice.Eyeball protrusion can afect aesthetics on the one hand, and on the other hand, it can lead to exposed keratitis due to incomplete closure of the eyelids or compressive optic neuropathy due to increased orbital pressure.Orbital decompression has been used to treat severe TAO that threatens vision for over 100 years, and its safety and efectiveness have been confrmed.However, postoperative new diplopia remains a challenge for many ophthalmic medical workers.In recent years, many studies have explored the relevant factors of postoperative new diplopia, and improved the surgery, achieving varying degrees of progress in reducing postoperative new diplopia.Tis article reviews the research progress of new diplopia afer orbital decompression, aiming to promote more accurate surgery for thyroid related eye diseases by specialized doctors.
房角镜辅助的内路360°小梁切开术(Gonioscopy-Assisted Transluminal Trabeculotomy,GATT)是近年来国内外开展的新型微创青光眼手术,是一种改良的小梁切开术。GATT将微导管(iTrack)环穿Schlemm's管后,利用微导管张力全周切开小梁网及Schlemm's管内壁,重建生理性房水流出通道,避免小梁网阻力,实现房水从前房直接进入集液管,通过增加房水流出机制降低眼压。GATT适应证广泛,主要应用于开角型青光眼,包括原发型开角型青光眼和继发性开角型青光眼,同时可运用于闭角型青光眼。GATT微创、不依赖滤过泡、能明显减少降眼压药物的使用、中远期疗效稳定、安全性高、较少发生威胁视力的并发症,可作为开角型青光眼的首选手术方式。本文将对GATT在青光眼中的应用、手术步骤、作用机制、有效性、并发症及影响疗效的因素等进行综述,以期为其临床运用提供参考。
As a modifed trabeculotomy, Gonioscopy-Assisted Transluminal Trabeculotomy (GAT) is a new type of minimally invasive glaucoma surgery developed at home and abroad in recent years. GAT inserts a microcatheter (iTrack) into the Schlemm's canal and advance the catheter through the canal circumferentially 360°, then circumferentially fracture the trabecular meshwork and inner wall of Schlemm’s canal. Tis method can reduce intraocular pressure by increasing the outfow of aqueous humor. Te physiological outfow pathway of aqueous humor is reconstructed, which can avoid the resistance of trabecular meshwork and realizing the direct entry of the aqueous humor directly into the collector channel from the anterior chamber. With a wide range of indications, GAT is mainly used in open-angle glaucoma, including primary open-angle glaucoma and secondary open-angle glaucoma, and is also used in primary closed- angle glaucoma. Additionally, GATT can be the preferred surgical modality for open-angle glaucoma, as it has the following advantages: minimally invasive, independent of fltration bleb, can signifcantly reduce the use of medications, stable medium- and long-term efcacy, high safety, and has fewer sight-threatening complications. In order to provide a reference for clinical application, this article reviews the indications, mechanism of action, surgical procedures, efectiveness, complication and factors afecting therapeutic efect.
眼健康是国民健康的重要组成部分,包括盲在内的视觉损伤严重影响人民群众的身体健康和生活质量,加重家庭和社会负担,威胁社会经济生产活动,是涉及民生的重大公共卫生问题和社会问题。弱视作为幼儿期起病的主要视觉障碍性疾病之一,是致使青少年低视力的首要因素,影响青少年自身学业和心理健康,增加致盲风险,故做好弱视的预防及康复工作刻不容缓。通过梳理研究发现,国内外对弱视的传统治疗方法有遮盖疗法、屈光矫正、压抑疗法等,知觉学习、视功能训练、电子视频游戏、针灸等则是近年逐渐新兴起并被广泛运用的弱视康复治疗方法,近年来关于年龄对弱视康复治疗影响的相关研究也较多。通过整理前人研究成果,提出建立儿童青少年视力档案、建立五位一体弱视康复治疗布局模式、进行联合临床治疗青少年弱视的对策,以期为青少年弱视提供康复治疗手段参考和选择,促进青少年弱视康复治疗眼健康事业发展。
Eye health is an important part of national health. Visual impairment, including blindness, seriously affects people’s physical health and quality of life, increases the burden on families and society, threatens social and economic production activities, and is a major public health and social problem related to people’s livelihood. Amblyopia,as one of the main visual disorders in early childhood, is the primary factor causing low vision in adolescents, which affects their academic and mental health and increases the risk of blindness. Therefore, it is urgent to do a good job in the prevention and rehabilitation of amblyopia. By summarizing existing studies, it is found that traditional treatment methods for amblyopia at home and abroad include occlusion therapy, refractive correction, and depressive therapy, while perceptual learning, visual function training, electronic video games, acupuncture and so on are gradually emerging in recent years and widely used in recent years. There are numerous studies on the impact of age on the rehabilitation of amblyopia. By sorting out the previous research results, this paper puts forward the countermeasures of establishing visual acuity files for children and adolescents, establishing the five- in-one rehabilitation treatment layout model, and combining clinical treatment for adolescent amblyopia, in order to provide reference and choice for the rehabilitation treatment of adolescent amblyopia, and promote the development of the eye health cause of adolescent amblyopia rehabilitation.
神经退行性疾病会损害大脑和神经系统的结构和功能,导致认知和行为能力逐渐下降,因此,早期诊断神经系统疾病可以促进预防、监测和治疗,从而改善患者的预后。眼与脑在结构和胚胎学上的相似之处为评估中枢神经系统的神经和微血管变化提供了潜在可能。眼组学是眼科学、遗传学和生物信息学的交叉学科,目标是开发快速、无创、具有成本效益的生物标志物,用于全身性疾病的筛查、诊断和风险分层。随着诊断和眼科成像技术的进步,用于检测眼的结构、功能和视觉变化的各项技术得到了快速发展。眼部生物标志物成为评估神经退行性疾病进展有前景的工具。文章采用眼部影像学(例如 OCT、OCTA)和电生理学(例如 VEP、ERG)等筛查方法检测眼部异常神经退行性疾病,总结了眼组学在神经退行性疾病的应用,包括阿尔茨海默病、帕金森病、额颞叶痴呆、肌萎缩侧索硬化症和亨廷顿病,旨在为神经退行性疾病的诊断和治疗提供新的思路。尽管并非所有生物标志物都是疾病特异性的,但未来大数据、人工智能和眼组学的融合,有可能进一步深入了解这些神经退行性疾病。
Neurodegenerative diseases can damage the structure and function of the brain and nervous system, leading to a gradual decline in cognitive and behavioral abilities. Therefore, early diagnosis of neurological diseases can promote prevention, monitoring, and treatment, thereby improving the prognosis of patients. The structural and embryological similarities between the eyes and the brain provide potential for evaluating neurological and microvascular changes in the central nervous system. oculomics is an interdisciplinary field that combines ophthalmology, genetics, and bioinformatics, with the goal of developing rapid, non-invasive, and cost-effective biomarkers for screening, diagnosis, and risk stratification of systemic diseases. With the advancement of diagnostic and ophthalmic imaging technologies, various techniques for detecting the structure, function, and visual changes of the eye have been rapidly developed. Eye biomarkers have become promising tools for assessing the progression of neurodegenerative diseases. The article uses screening methods such as eye imaging (such as OCT, OCTA) and electrophysiology (such as VEP, ERG) to detect abnormal neurodegenerative diseases in the eyes. It summarizes the application of oculomics in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease, aiming to provide new ideas for the diagnosis and treatment of neurodegenerative diseases. Although not all biomarkers are disease-specific, the integration of big data, artificial intelligence, and oculomics in the future may further deepen our understanding of these neurodegenerative diseases.
视网膜静脉阻塞(Retinal Vein Occlusion, RVO)是导致视力损害的主要眼底疾病之一,常引发视网膜缺血、出血、液体渗漏和黄斑水肿,从而导致视力下降甚至永久丧失。目前,RVO继发黄斑水肿的主要治疗方法是玻璃体腔内注射抗血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)药物。然而,RVO的病理机制不仅限于VEGF,还涉及血管生成素-2(Angiopoietin-2, Ang-2)的作用。在病理状态下,Ang-2通过破坏血管稳定性,诱导新生血管形成,并加剧炎症反应,进一步促进RVO的病程进展。法瑞西单抗(Faricimab)作为一种双特异性抗体药物,能够同时抑制VEGF-A和Ang-2这两条关键的病理通路,显示出在改善患者视力方面的潜在优势。文章对Faricimab在RVO治疗中的作用机制、临床应用、相关治疗药物对比及未来发展前景进行了详细论述,为其在眼科领域的进一步应用提供了理论依据和参考。
Retinal vein occlusion (RVO) is one of the leading retinal diseases causing vision impairment and is often associated with retinal ischemia, hemorrhage, fluid leakage, and macular edema, ultimately resulting in decreased vision or even permanent vision loss. Currently, the primary treatment for RVO-associated macular edema is intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents. However, the pathological mechanisms of RVO are not limited to VEGF alone, but also involve angiopoietin-2 (Ang-2). Under pathological conditions, Ang-2 disrupts vascular stability, induces neovascularization, and exacerbates inflammatory responses, thereby accelerating the progression of RVO. Faricimab, as a bispecific antibody, can simultaneously inhibit both VEGF-A and Ang-2 pathways, which are critical in RVO pathogenesis, and has shown potential advantages in improving visual outcomes. The article provides a detailed discussion on the mechanism of action, clinical applications, comparison with related therapeutic agents, and future development prospects of Faricimab in the treatment of RVO, offering a theoretical basis and reference for its further application in ophthalmology.