甲状腺相关眼病是一种器官特异性自身免疫性疾病,其发病机制复杂,是成人最常见的眼眶疾病,且发病率逐年升高。该病不仅会导致眼球突出、眼睑退缩、睑裂扩大、眼球运动障碍等外观上的变化,且患者往往伴发眼红、眼痛、干涩、异物感、复视、视力下降等不适症状,其中眼表疾病的发病率较正常人明显增高,但其具体发病机制尚待进一步挖掘。目前研究表明甲状腺相关眼病患者的眼表损伤主要与眼表暴露增加、炎症侵犯、激素改变有关。角膜、结膜、泪膜、睑板腺等组织受累发生病理改变是患者表现出不同临床症状的直接原因。文章通过分析近年来国内外关于甲状腺相关眼病与眼表疾病等方面的相关研究,针对甲状腺相关眼病眼表损伤的病理改变及机制研究进展做一综述。
Tyroid-associated ophthalmopathy is an organ-specifc autoimmune disease with complex pathogenesis. It is the most common orbital disease in adults, and its incidence increases year by year. Tis disease can not only lead to appearance changes such as eyeball protrusion, eyelid retraction, eyelid cleat enlargement, eye movement disorders, and patients are ofen accompanied by red eyes, eye pain, dryness, foreign body sensation, diplopia, vision loss and other uncomfortable symptoms, among which the incidence of ocular surface diseases is signifcantly higher than that of normal people, but its specifc pathogenesis needs to be further explored. Current studies have shown that ocular surface injury in patients with thyroid-associated ophthalmopathy is mainly related to increased ocular surface exposure, infammatory invasion, and hormonal changes. Te pathological changes of cornea, conjunctiva, tear flm, meibomian gland and other tissues involved are the direct causes of different clinical symptoms of patients. In this paper, through the analysis of recent domestic and foreign studies on thyroid-associated ophthalmopathy and ocular surface diseases, the pathological changes and mechanism of ocular surface injury in thyroid-associated ophthalmopathy were reviewed.
外伤性视神经病变是因外力损伤视神经,进而严重损害视力的致盲性眼病。自噬是一种细胞内降解途径,有助于维持细胞正常组分合成与受损细胞器及有毒细胞成分的分解之间的平衡。视神经受创后,视神经和视网膜中自噬标志物增加。自噬在外伤性视神经病变的不同阶段对视网膜神经节细胞可能起不同作用。多数研究表明,上调自噬可以减轻外伤性视神经病变中视网膜神经节细胞的死亡;也有研究提示在视神经损伤后极早的时期抑制自噬可以抑制视网膜神经节细胞轴突变性。该文对自噬的定义及功能、自噬的发生机制、视神经创伤后自噬水平改变、自噬在视神经创伤后对视网膜神经节细胞的作用的研究结果进行综述。
Traumatic optic neuropathy is a blinding eye disease that causes severe damage to vision due to external force damage to the optic nerve.. Autophagy is an intracellular degradation pathway that helps maintain the balance between the synthesisof normal cell components and the breakdown of damaged organelles and toxic cellular components. Autophagy markers are increased in optic nerve and retina after optic nerve trauma. Autophagy may play different roles on retinal ganglion cells (RGCs) at different stages of traumatic optic neuropathy. Most studies have shown that upregulating autophagy can attenuate RGCs death in traumatic optic neuropathy; however, it has also been suggested that inhibition of autophagy at ultra-early stage after injury can inhibit RGCs axonal degeneration. In this review, we reviewed the definition and function of autophagy, the mechanism of autophagy, and summarized the change of autophagy level after optic nerve trauma, as well as the effects of autophagy in RGCs after optic nerve trauma.
随着近视人口的逐年增长,近视已经成为全球关注的热点问题。如何预防近视、控制近视进展、减少病理性近视的发生、减少近视的成本投入是临床工作及科学研究的主要目的。阿托品是目前防控近视的主要药物方法,实验室研究及临床试验均已证实其显著的近视防控效果。美国眼科学会推荐使用0.01%低浓度阿托品,目前报道其近视防控效果为50%~53%。本文汇总了近年来近视防控相关的临床与实验室研究,对阿托品近视防控效果、其相关影响因素(如浓度、个体差异、生物利用度等)以及作用机制等方面的研究进展进行归纳综述,并分析了阿托品用于临床儿童近视防控工作存在的困难与挑战。
As the population of myopia grows rapidly, myopia has become a hot issue of global concern. Preventing myopia and slowing the progression of myopia to reduce the occurrence of pathological myopia and reduce the cost of myopia is the main purpose of related clinical work and scientific researches. Currently, atropine is the main drug for the prevention and control of myopia, and both laboratory studies and clinical trials have confirmed its effect. The American Academy of Ophthalmology recommends the use of 0.01% atropine, which is reported to be 50% to 53% effective in preventing and controlling myopia. This review collects the clinical and laboratory researches in decades to summarize the study progress in atropine for preventing and controlling myopia, including the clinical application effects, the influencing factors such as concentration, individual differences, bioavailability, and the related mechanisms. We also highlight the existing difficulties and challenges in the use of atropine in clinic.
高度近视(high myopia,HM)作为一种特殊类型的屈光型眼病,不仅会导致进行性、退行性眼底改变,其视神经损伤的患病率也很高。青光眼是全球范围内最常见的一种不可逆致盲性眼病,原发性开角型青光眼(primary open-angle glaucoma,POAG)是最常见的青光眼类型。近年来的研究发现HM与POAG的病理改变存在相似之处。由于HM眼底改变与早期POAG眼底改变容易混淆,HM患者早期发现POAG对延缓或阻止疾病进展很重要。HM患者长期随访不仅要观察黄斑病变,视神经形态与结构改变的观察也不容忽视。
As a special type of refractive eye disease, high myopia (HM) not only causes progressive and degenerative fundus changes, but also has a high prevalence of optic nerve damage. Glaucoma is the most common form of irreversible blinding eye diseases worldwide, among which, primary open-angle glaucoma (POAG) is the most common type. In recent studies, HM is found to have similarities on pathological changes as that of POAG. And HM fundus changes are easily confused with early stage POAG fundus changes; thus, the early detection of POAG on HM patients is highly important on disease deferment or prevention of disease progression. Macular degeneration as well as optic nerve morphology and structural changes are to be observed in the long-term follow-up for HM patients.
随着微创玻璃体切除术(pars plana vitrectomy,PPV)的广泛开展和手术技术的提高,患者对手术后视觉质量的要求越来越高。白内障是PPV术后最常见并发症,而具有玻璃体切除史的白内障患者屈光变异大,预测难度高。本文综述了生物测量误差、人工晶状体屈光力计算公式选择以及有效晶状体位置预测等影响有玻璃体切除手术史的白内障患者术后屈光误差的主要因素,旨在为降低这一类特殊人群白内障术后屈光误差提供参考。
With the widespread application of minimally invasive vitrectomy and the improvement of surgical techniques, the demands of patients for better postoperative visual quality are increasing. Cataract is the most common complication after vitrectomy, whereas the refractive outcomes of cataract patients with prior vitrectomy are viable and difficult to predict. In this paper, the main factors affecting postoperative refractive error of cataract patients with a history of vitrectomy, such as biometric error, selection of intraocular lens calculation formulas and prediction of effective lens position, were reviewed in order to provide reference for reducing postoperative refractive error of this special group of cataract patients.
视网膜静脉阻塞(retinal vein occlusion, RVO)是导致视力损害的主要眼底疾病之一,常引发视网膜缺血、出血、液体渗漏和黄斑水肿,从而导致视力下降甚至永久丧失。目前,RVO继发黄斑水肿的主要治疗方法是玻璃体腔内注射抗血管内皮生长因子(vascular endothelial growth factor, VEGF)药物。然而,RVO的病理机制不仅限于VEGF,还涉及血管生成素-2(angiopoietin-2, Ang-2)的作用。在病理状态下,Ang-2通过破坏血管稳定性,诱导新生血管形成,并加剧炎症反应,进一步促进RVO的病程进展。法瑞西单抗(Faricimab)作为一种双特异性抗体药物,能够同时抑制VEGF-A和Ang-2这两条关键的病理通路,显示出在改善患者视力方面的潜在优势。文章对Faricimab在RVO治疗中的作用机制、临床应用、相关治疗药物对比及未来发展前景进行了详细论述,为其在眼科领域的进一步应用提供了理论依据和参考。
Retinal vein occlusion (RVO) is one of the leading retinal diseases causing vision impairment and is often associated with retinal ischemia, hemorrhage, fluid leakage, and macular edema, ultimately resulting in decreased vision or even permanent vision loss. Currently, the primary treatment for RVO-associated macular edema is intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents. However, the pathological mechanisms of RVO are not limited to VEGF alone, but also involve angiopoietin-2 (Ang-2). Under pathological conditions, Ang-2 disrupts vascular stability, induces neovascularization, and exacerbates inflammatory responses, thereby accelerating the progression of RVO. Faricimab, as a bispecific antibody, can simultaneously inhibit both VEGF-A and Ang-2 pathways, which are critical in RVO pathogenesis, and has shown potential advantages in improving visual outcomes. The article provides a detailed discussion on the mechanism of action, clinical applications, comparison with related therapeutic agents, and future development prospects of Faricimab in the treatment of RVO, offering a theoretical basis and reference for its further application in ophthalmology.
先天性晶状体脱位(congenital ectopia lentis, CEL)是一种罕见的遗传相关性疾病,其主要临床特征是晶状体悬韧带先天性发育异常,导致晶状体偏离正常解剖位置。随着病情的进展,CEL可引起高度屈光不正甚至弱视外,还可能导致继发性青光眼和视网膜脱离等严重的并发症。目前,手术仍是改善CEL患儿视觉质量及防治并发症的主要手段。常用的手术方式包括晶状体摘除术、前房型人工晶状体(intraocular lens, IOL)植入术、囊袋支撑装置联合IOL植入术及经巩膜IOL固定术等,这些手术方式各具特点,但目前最佳手术方式仍未有定论。既往大量文献表明,手术能够显著改善CEL患儿视力,但随着眼球的生长发育,CEL患儿术后屈光状态常出现近视漂移。此外,术后并发症如缝线暴露,IOL瞳孔夹持、IOL脱位、视网膜脱离等仍有可能发生,需要长期的严密随访。这些因素都使得CEL的治疗具有挑战性。为此,文章就CEL的手术方式、视力预后、术后屈光变化及术后并发症进行综述,旨在为该疾病的临床诊断及治疗提供更为全面和深入的理解。
Congenital ectopia lentis (CEL) is a rare genetic disorder characterized by the displacement of the lens from its normal anatomical position due to abnormalities in the lens zonular. As the progression of the disease, CEL can lead to high refractive error, even amblyopia, as well as other serious complications such as secondary glaucoma and retinal detachment. Currently, surgical intervention remains the primary method to improve the visual quality and prevent complications in children with CEL.Common surgical options include lens extraction, anterior chamber intraocular lens (IOL) implantation, IOL implantation combined with capsular tension devices, and transcleral fixation of IOL. Each surgical approach has its own characteristics, but there is currently no consensus on the best surgical method. Previous literature has shown that surgery can significantly improve vision in children with CEL; however, due to the growth of the eye, postoperative refractive status often experiences myopic shift. Additionally, complications such as suture exposure, IOL pupil capture, IOL dislocation, and retinal detachment may still occur, necessitating long-term close follow-up. These factors make the treatment of CEL challenging. This article reviews the surgical approaches, visual prognosis, postoperative refractive changes, and postoperative complications associated with CEL, aiming to provide a more comprehensive and in-depth understanding for the clinical diagnosis and treatment of this disease.
糖基化是一种重要的蛋白质翻译后修饰,通常发生在内质网和高尔基体的特定位置。N-糖基化和O-糖基化是最常见的糖基化修饰类型。与其他翻译后修饰相比,糖基化具有独特的生物学意义,包括结构的复杂多样性,生物功能的重要性以及进化上的保守性。糖基化修饰对于蛋白质稳定性、细胞黏附与识别、细胞内信号传导和表观遗传学具有重要影响,从而参与调节细胞生物学和发病机制。近年来,越来越多的研究揭示了糖基化参与眼部疾病的发生和发展,包括眼表疾病、圆锥角膜、青光眼、年龄相关性黄斑变性、视网膜色素变性、糖尿病视网膜病变等。眼部蛋白糖基化异常可通过诱发新生血管形成、炎症反应、氧化应激、异常免疫应答等改变细胞的结构与功能,进而影响各种眼病的发生发展。通过深入研究糖基化在不同眼部疾病中的作用机制,可以为相关眼部疾病的早期诊断和治疗提供新的思路和方法。现综述糖基化在眼部疾病的研究进展,以探究调控蛋白质糖基化对眼部疾病的诊疗意义。
Glycosylation is an important post-translational modification of proteins that usually occurs at specific locations within the endoplasmic reticulum and Golgi apparatus. N-glycosylation and O-glycosylation are the most common types of glycosylation modifications. Compared to other post-translational modifications, glycosylation has unique biological significance, including structural complexity and diversity, crucial biological functions, and evolutionary conservation. Glycosylation modifications significantly impact protein stability, cell adhesion and recognition, intracellular signal transduction, and epigenetics, thereby regulating cellular biology and pathogenesis. In recent years, an increasing amount of research has revealed the involvement of glycosylation in the occurrence and development of ocular diseases, including ocular surface diseases, keratoconus, glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Abnormal glycosylation of ocular proteins can induce changes in cell structure and function through mechanisms such as neovascularization, inflammatory response, oxidative stress, and abnormal immune response, thereby influencing the occurrence and development of various eye diseases. By deeply studying the mechanisms of glycosylation in different ocular diseases, new insights and methods can be provided for the early diagnosis and treatment of related ocular diseases. This review summarizes the research progress of glycosylation in ocular diseases to explore the diagnostic and therapeutic significance of regulating protein glycosylation in ocular diseases.
近年来,眼部电流刺激(electrical stimulation,ES)在不同方向的研究中逐渐揭示了其在多种视网膜疾病中的潜在治疗价值。其中,经角膜电刺激(transcorneal electrical stimulation,TES)作为一种非侵入性的治疗方法,能对视网膜、视神经、眼底血管及其相关结构产生积极的影响。TES能够改善视力,在保护感光细胞和减缓疾病进展方面显示出积极效果,提高患者的生存质量,还能够在不损伤眼球的情况下调节大脑中的神经元活动,为视网膜疾病的治疗提供一种新的选择。该文对近年来TES在视网膜色素变性(retinitis pigmentosa,RP)、年龄相关性黄斑变性(age-related macular degeneration,AMD)、视网膜血管病、青光眼以及视神经病变等疾病中的应用研究进行了综述。研究发现,TES治疗是一种安全且无需手术的辅助治疗工具,具有广泛的应用前景。该文旨在为临床医师提供一个全面的TES研究概述,并深入探讨其在眼科学领域的潜在应用价值。然而,TES治疗的具体机制仍需进一步探讨,以便更好地应用于临床实践。同时,未来研究还应关注TES与其他治疗方法相结合的效果,以期为患者提供更多有效的治疗选择。
In recent years, electrical stimulation of the eye (ES) has gradually revealed its potential therapeutic value in a variety of retinal diseasesin different directions. Among them, transcorneal electrical stimulation (TES), as a non-invasive treatment, can have a positive effect on the retina, optic nerve, fundus vessels and related structures. TES can improve vision, show positive effects in protecting photoreceptor cells and slowing disease progression, improve the quality of life of patients, and can regulate neuronal activity in the brain without damaging the eyeball, providing a new option for the treatment of retinal diseases. The research on the application on TES on retinitis pigementosa (RP), age-related macular degeneration (AMD), retinal angiopathy, glaucoma and optic neuropathy are reviewed in this article. It is found in the study that TES therapy is a safe and surgery-free adjuvant therapy tool, and has a wide application prospect. The purpose of this article is to provide clinicians with a comprehensive overview of TES research,and to explore its potential application value in the field of ophthalmology. However, the specific mechanism of TES therapy still needs to be further explored in order to better apply in clinical practice. At the same time, future studies should also focus on the effect of combining TES with other treatment methods, in order to provide more effective treatment options for patients.
甲状腺相关眼病(thyroid-associated ophthalmopathy,TAO),又称Graves眼病,是与甲状腺疾病密切相关的一种器官特异性自身免疫性疾病。眼球突出是TAO的主要临床表现之一,也是临床上多数患者就诊的原因。眼球突出一方面会影响美观,另一方面可因眼睑闭合不全导致暴露性角膜炎或因眼眶压力增大导致压迫性视神经病变。眼眶减压术用于重度TAO已有过百年历史,从最早经外眦皮肤切开的传统外部切口入路进行骨性眼眶减压及脂肪减压到内镜下经鼻入路眼眶减压术,其安全性和有效性均已得到肯定。术后复视是眼眶减压术常见的并发症。近年来,随着眼眶减压术的发展,其越来越多地用于美容目的以矫正眼球突出。然而术后的新发复视仍然是困扰众多相关眼科医疗工作者的难题。近年来,多项研究对术后新发复视的相关因素进行了探讨,并由此对眼眶减压术进行改良,在对术后新发复视的减少方面取得不同程度的进展。该文对眼眶减压术后新发复视的研究进展进行综述,旨在促进专科医生更精准地开展TAO的手术,进而提高手术患者术后的生活质量及手术满意度。
Thyroid-associated ophthalmopathy (TAO), known as Graves’orbitopathy, is an organ specific autoimmune disease closely related to thyroid diseases. Exophthalmos is one of the main clinical manifestations of thyroid related ophthalmopathy and is also the reason for most patients seeking medical atention in clinical practice.Eyeball protrusion can afect aesthetics on the one hand, and on the other hand, it can lead to exposed keratitis due to incomplete closure of the eyelids or compressive optic neuropathy due to increased orbital pressure.Orbital decompression has been used to treat severe TAO that threatens vision for over 100 years, and its safety and efectiveness have been confrmed.However, postoperative new diplopia remains a challenge for many ophthalmic medical workers.In recent years, many studies have explored the relevant factors of postoperative new diplopia, and improved the surgery, achieving varying degrees of progress in reducing postoperative new diplopia.Tis article reviews the research progress of new diplopia afer orbital decompression, aiming to promote more accurate surgery for thyroid related eye diseases by specialized doctors.