红光是波长范围在620~760 nm的可见光,兼有良好的光化学和热作用,其穿透力较强,能够达到皮肤深层及组织内部,从而产生一系列的生物效应。在眼科领域,红光疗法最初主要应用于弱视和眼睑皮肤相关疾病的治疗,随着研究的进一步深入,红光逐渐被应用于控制近视进展和视网膜相关疾病。目前,重复低强度红光(repeat low-level red-light, RLRL)在近视进展的控制效果得到充分肯定,成为红光疗法在眼科应用最受关注的热点之一,其主要可能机制包括红光照射能激活线粒体中的细胞色素C氧化酶的活性,促进三磷酸腺苷(adenosine triphosphate, ATP) 生成,改善网膜缺氧状况;促进一氧化氮 (nitric oxide, NO)的合成和释放,引起脉络膜血管的扩张及血流量的增加;诱导巩膜细胞外基质的重塑,增加巩膜的强度。此外,红光疗法可抑制视网膜感光细胞调节通路中的氧化应激、炎症和细胞凋亡,减轻眼表炎症反应和疼痛,有助于周围神经损伤后修复等。文章针对红光疗法在近视、视网膜相关疾病、弱视及眼睑皮肤相关疾病的治疗机制、有效性及安全性进行综述,为红光疗法在眼科领域的应用提供重要的参考价值和依据。
Red light is visible light with a wavelength range of 620-760 nm, which has excellent photochemical and thermal effects. It can penetrate deeply into the skin and tissues with strong power, resulting in a series of biological effects. In the field of ophthalmology, red-light therapy was initially mainly used in the treatment of amblyopia and eyelid skin-related diseases, and with the further development of research, red light has been gradually used in the myopia control and the study of retina-related diseases. At present, the effect of repeated low-intensity red light (RLRL) on myopia progression has been fully recognized, and it has become one of the most concerned hotspots in the application of red-light therapy in ophthalmology. The main possible mechanisms include that red light therapy can activate the activity of cytochrome C oxidase in mitochondria, promote ATP production, and improve retinal hypoxia. It can also induce the synthesis and release of NO, cause the expansion of choroidal vessels with improvement of blood flow, and increase scleral strength by remodeling of scleral extracellular matrix. In addition, red- light therapy can reduce oxidative stress, inflammation and apoptosis in the regulatory pathways of photoreceptor cells, reduce eye inflammation and pain, and help repair peripheral nerves after injury. This article will review the mechanism, effectiveness and safety of red-light therapy in myopia, retinal diseases, amblyopia, and eyelid skin-related diseases, in order to provide important reference value and basis for the application of red-light therapy in ophthalmology.
儿童白内障是全球范围内可治疗儿童盲症的主要原因之一。对于这些患儿而言,手术是恢复或保护视力的主要方法。然而,手术后的并发症,特别是青光眼相关不良事件(glaucoma-related adverse events, GRAEs),常常成为导致儿童二次致盲的主要原因,这引起了眼科医疗领域的广泛关注。文章综述了儿童Ⅱ期人工晶状体植入术后GRAEs的影响因素,包括手术设计、眼部解剖特征、其他眼部发育异常和全身疾病等。手术设计中是否植入人工晶状体(intraocular lens,IOL)以及植入的时机和位置都对GRAEs的发生有显著影响。此外,眼部解剖特征如角膜直径、眼轴长度、前房深度、中央角膜厚度和术前晶状体厚度等,也是影响GRAEs发生的重要因素。同时,其他眼部发育异常和全身疾病,如先天性无虹膜、先天性风疹综合征等,也会增加儿童白内障术后青光眼的发生率。文章还总结了预测GRAEs的方法,并推荐使用Cox回归模型建立预测模型。这种模型可以有效地预测儿童Ⅱ期IOL植入术后在特定时间段内发展为GRAEs的概率,从而为早期识别GRAEs高危儿童提供了重要的借鉴。通过对GRAEs影响因素的深入分析和预测模型的建立,文章旨在帮助眼科医生更好地理解GRAEs的发生机制,并在手术前对患儿进行风险评估,从而选择最佳的手术方案和预防措施。这对于改善患儿的术后恢复、减少并发症、保护视功能具有重要的临床意义。
Pediatric cataract is one of the leading causes of treatable childhood blindness worldwide. For these children, surgery is the primary method to restore or preserve vision. However, postoperative complications, particularly glaucoma-related adverse events (GRAEs), often become the main reason for secondary blindness in children, attracting widespread concern in the field of ophthalmology. This study reviews the impact factors of glaucoma-related adverse events after secondary intraocular lens (IOL) implantation in children, including surgical design, ocular anatomical characteristics, other ocular developmental abnormalities, and systemic diseases. Whether to implant an IOL in the surgical design and the timing and positioning of the implantation have a significant impact on the occurrence of GRAEs. In addition, ocular anatomical characteristics, such as corneal diameter, axial length, anterior chamber depth, central corneal thickness, and preoperative lens thickness, are also important factors affecting the occurrence of GRAEs. At the same time, other ocular developmental abnormalities and systemic diseases, such as congenital aniridia and congenital rubella syndrome, also increase the incidence of glaucoma after pediatric cataract surgery. The article also summarizes methods for predicting GRAEs and recommends using the Cox regression model to establish a predictive model. This model can effectively predict the probability of children developing GRAEs after secondary IOL implantation within a specific time period, providing an important reference for the early identification of high-risk children for GRAEs. Through in-depth analysis of the impact factors of GRAEs and the establishment of predictive models, the article aims to help ophthalmologists better understand the mechanisms of GRAEs and assess the risks of children before surgery, thereby selecting the best surgical plan and preventive measures. This is of great clinical significance for improving postoperative recovery in children, reducing complications, and protecting visual function.
脉络膜是视网膜的主要血供来源,脉络膜血管系统为眼内最大、最重要的血管系统,在给外层视网膜供血方面起着至关重要的作用。脉络膜是一个动态、多功能性结构,其生理性特性受多种因素影响。这些因素包括年龄、性别、解剖位置、眼轴长度、昼夜节律与饮酒等。脉络膜涡静脉根据解剖学位置可分为眼内、巩膜内和眼外三大部分,又进一步分为脉络膜静脉、壶腹前部、壶腹、壶腹后部、巩膜入口、巩膜内通道、巩膜出口和巩膜外涡静脉八个区域。在正常眼中,涡静脉的类型不仅限于传统认知中出口位于赤道部近睫状体平坦部的涡静脉,研究发现还存在出口位于后极部的后极部涡静脉。根据涡静脉的形态及解剖特点,涡静脉又分为四类:缺失型涡静脉、不完整型涡静脉、完整型涡静脉、完整型涡静脉伴壶腹。文章旨在阐述正常人眼的脉络膜血流及涡静脉解剖基础,以深入了解正常状态下的脉络膜特征,这不仅有助于辨别脉络膜的病理性变化,且对脉络膜相关眼部疾病的诊断与鉴别诊断有重要价值。
The choroid is the primary source of blood supply for the retina. As the largest and most important vascular system within the eye, the choroidal vasculature plays a crucial role in providing blood to the outer retina. The choroid is a dynamic, multifunctional structure whose physiological characteristics are influenced by a variety of factors. These factors include age, gender, anatomical location, axial length of the eye, circadian rhythm, and alcohol consumption, among others. Choroidal vortex veins can be anatomically divided into three main parts: intraocular, scleral, and extraocular. Furthermore, they can be subdivided into eight distinct regions: choroidal veins, pre-ampulla, ampulla, post-ampulla, scleral entrance, intrascleral canal, scleral exit, and extrascleral vortex vein. In the healthy eye, the types of vortex veins are not limited to the traditionally recognized veins with exits near the ciliary body pars plana in the equatorial region. Recent research has revealed the existence of posterior vortex veins with exits in the posterior pole of the eye. Based on the morphology and anatomical characteristics of vortex veins, they can be further classified into four types:absent vortex veins, incomplete vortex veins, complete vortex veins, complete vortex veins with ampulla. This paper aims to elucidate the blood flow and vortex veins anatomical foundation of the choroid in normal human eyes. Understanding these characteristics in a healthy state will aid in identifying pathological changes in the choroid, which is of significant value for the diagnosis and differential diagnosis of ocular diseases.
碳点是一种新型荧光碳纳米材料,直径一般小于10 nm,具有自发荧光、高生物组织相容性、易于修饰、成本低廉等优点,在生物医学领域拥有广阔的应用前景。眼球因其独特的屏障结构,常规药物停留时间短、穿透性差,通过局部滴眼到达病灶的药物浓度有限,需要增加给药频次以保持药效。另外,糖尿病性黄斑水肿(diabetic macular edema,DME)、脉络膜新生血管(diabetic macular edema,CNV)等疾病的治疗给药则需依赖于玻璃体腔注射,该方法属于有创操作,有引起潜在并发症的可能,且需多次注射,给患者造成了沉重的心理和经济负担。优化眼部给药方法一直是眼科学领域的研究热点。基于碳点的优异特性,碳点在眼部药物递送、眼部成像、眼疾病诊疗中已展现出优秀的应用潜力。本综述将综合介绍碳点的特点及近十年来碳点在眼科疾病诊疗中的研究进展,旨在提供关于碳点在眼科应用现状的系统性认识,为未来研究提供方向。
Carbon dots is a new type of fluorescent carbon nanomaterial, which the diameter is generally less than 10 nm, has the advantages of self-fluorescence, remarkable biocompatibility, easy modification, low cost and so on, has a broad application prospect in the biomedical field. Due to the unique barrier of the eye, conventional drugs have a short residence time and poor penetration, so the concentration of drugs that can reach the lesions through local eye drops is limited, and for what to increase the frequency of administration to maintain efficacy. Up to now, the treatment of posterior eye diseases, such as diabetic macular edema (DME), choroidal neovascularization (CNV) and other diseases still rely on repeated vitreous injection, which is an invasive procedure with potential complications, and need multiple injections, causing a heavy psychological and economic burden on patients. Optimizing the method of ocular drug delivery has always been a hot topic in the field of ophthalmology. Carbon dots have shown excellent application potential in the ocular drug delivery, ocular imaging, and diagnosis and treatment of ocular disease based on its excellent characteristics. This review will systematically introduce the characteristics of carbon dots and the application of carbon dots in the diagnosis and treatment of eye diseases, aiming to provide a comprehensive understanding of the current situation of the application of carbon dots in ophthalmology and provide directions for future research.
数字眼科技术的蓬勃发展已经渗透于眼科各领域,并为眼科前沿技术研究带来了重大变革。文章对眼科前沿技术研究和发展进行综述,重点关注各项技术的突破和成果,聚焦国内的同时也放眼全球,阐明近年来全球数字眼科前沿技术现状和成果。如人工智能可运用于诸多疾病的精准监测、高发疾病的高效评估、远程医疗的技术支持等,提高了筛查、诊断、治疗等各环节的精确度和效率,减轻了医生的负担,展现了极大的应用潜能。其余各类技术方面,如数字成像技术也取得了飞跃式进展,在手术导航和影像诊断方面实现突破;3D建模技术和机器学习技术在手术设计和提高手术成功率方面立下汗马功劳,为世界各地的眼科疾病患者提供了更为高效、便捷的服务。此外,数字眼科技术还呈现出多元化发展的态势,与多学科协同交流,交叉运用。虽然诸多眼科前沿技术还处在发展初期,距离全覆盖实施仍有一定距离,在算法的准确性和可解释性、医疗伦理、民众接受度、医疗纠纷、临床技术挑战等问题上还存在很多不确定性。但毫无疑问的是,随着医学水平的日益提升,上述技术必会得到不断完善和普及。
The rapid evolution of digital ophthalmology technology has profoundly transformed various fields within ophthalmology. This article provides a comprehensive overview of the research and advancements in cutting-edge ophthalmology technologies, emphasizing both domestic and global breakthroughs and achievements. For instance, artificial intelligence has demonstrated remarkable potential in precise monitoring of various diseases, efficient assessment of high-prevalence conditions, and the technological support for telemedicine, thereby enhancing the accuracy and efficiency of screening, diagnosis, treatment processes, while alleviating the workload of medical professionals. Additionally, digital imaging technology has made significant strides in surgical navigation and diagnostic imaging, while 3D modeling and novel machine learning techniques have contributed to surgical planning and enhanced surgical success rates, ultimately delivering more efficient and convenient services to patients with eye diseases worldwide. Despite the diversified development trends and interdisciplinary collaborations that digital ophthalmology technology exhibits, many of these cutting-edge technology are still in their infancy, facing challenges in achieving high coverage, algorithm accuracy and interpretability, medical ethics, public acceptance, medical disputes, and clinical technical hurdles. Nonetheless, while the continuous advancement of medical standards, it is anticipated that these technologies will undergo further refinement and widespread adoption.
航天飞行相关的神经-眼综合征(spaceflight associated neuro-ocular syndrome,SANS)是指宇航员在长时间航天飞行期间和之后观察到的包括视盘水肿、后极部眼球扁平、脉络膜视网膜皱褶和远视飘移等在内的一系列眼部、神经和神经影像学表现,可能会对飞行员造成短期或长期的视力改变、认知影响或其他有害的健康影响,因此,明确SANS的发病机制,进行有效的地面模拟实验及制定对应的缓解对策对未来更远、更久的航天飞行具有重要的意义。目前SANS的发病机制主要有颅内压升高、脑血容量波动与血管重塑、脑和视交叉向上移位、眼淋巴系统流动失衡、细胞毒性水肿、眼眶脂肪肿胀等。国际上研究较多的地面模拟实验为6°头朝下倾斜卧床休息,能够重现SANS的各种表现,包括视神经鞘扩张、视网膜神经层增厚、脉络膜厚度增加和视盘水肿;此外,干浸浴、抛物线飞行等地面模拟实验也观察到了SANS的部分表现。下体负压作为缓解对策能减轻脉络膜增厚和视神经鞘直径增加,正压力护目镜也有望成为应对SANS的有效对策。该文就国内外相关进展进行综述。
Spaceflight associated neuro-ocular syndrome (SANS) refers to a series of ocular, neurological and neuroimaging manifestations observed in astronauts during and after long-term space flight, including optic disc edema, posterior globe flattening, choroid-retinal folds, and hyperopic refractive shift. These effects may have short-term or longterm on vision , cognitionand other aspects of astronauts’ health. Therefore, elucidating the pathogenesis of SANS, conducting effective ground simulation experiments, and developing corresponding mitigation strategies are crucial for enabling deeper and longer-duration space exploration. Current understanding of the pathogenesis of SANSincludes increased intracranial pressure, fluctions in cerebral blood volume and vascular remodeling, upward displacement of the brain and optic chiasm, imbalance in ocular lymphatic system flow, cytotoxic edema, and orbital fat swelling, etc. Among the various ground simulation experimens, the 6 ° head-down tilt bed rest has been extensively studied and has been shown to replicate various manifestations of SANS, such as optic nerve sheath expansion, retinal nerve layer thickening, choroidal thickness increase and optic disc edema. Additionally, dry immersion and parabolic flight have also demonstrated some aspects of SANS during ground simulation experiments.The use of lower body negative pressure has been identified as a potential countermeasure to reduce choroidal thickening and increase in optic nerve sheath diameter. Furthermore, positive pressure goggles are also expected to be an effective strategy for mitigating the effectsof SANS.This article provides a comprehensive review of the relevant advancements in the field of SANS, both domestically and internationally.
该文报道了一例40岁女性患者,因“双眼渐进性视物模糊3个月”就诊。患者既往于2005年因高度近视行双眼准分子激光原位角膜磨镶术 (LASIK)。最佳矫正视力OD:0.2 (–11.00 DS/ –1.25 DC×170 °),OS:0.7 (–4.00 DS/ –0.75 DC×25 °)。双眼角膜透明,前房中深,晶状体混浊,豹纹状眼底伴后巩膜葡萄肿。诊断为双眼并发性白内障,并行右眼白内障超声乳化联合人工晶状体 (IOL) 植入术,术中植入+14.0 D IOL一枚,目标屈光度为–0.5 D。术后1周裸眼视力0.3,验光结果示右眼屈光度+2.75 DS,最佳矫正视力0.7。术后2周行右眼IOL置换术,由+14.0 D置换为+17.0 D。右眼术后1周裸眼视力0.8,验光结果示右眼屈光度–0.75 DC×15 °。
It is reported in this article that a 40-year-old female patient presented with "progressive blurred vision of both eyes for 3 months". The patient underwent bilateral laser in situ keratomileusis (LASIK) because of high myopia in 2005. It was recorded that her best corrected visual acuity was 0.2 (–11.00 DS/ –1.25 DC×170 °) in the right eye and 0.7 (–4.00 DS/ –0.75 DC×25 °) in the left, and clear cornea, normal anterior chamber, cloudy lens, tessellated fundus with posterior staphyloma in both eyes. The patient was diagnosed with bilateral complicated cataract. Phacoemulsification combined with intraocular lens (IOL, +14.0 diopter (D)) implantation was performed on the right eye, with the target –0.5D refractive diopter . One week after surgery, it was recorded that the uncorrected visual acuity of the right eye was 0.3, and the best corrected visual acuity was 0.7 (+2.75 DS). IOL replacement of the right eye was performed two weeks after surgery, the +14.0 D IOL was replaced by +17.0 D IOL. One week after surgery, the uncorrected visual acuity of the right eye was 0.8 (–0.75 DC×15 °).
目的:比较Alcon Acrysof IQ PanOptix TFNT00 (PanOptix)晶状体常数优化前后对人工晶状体(intraocular lens,IOL)度数计算准确性的影响,以及不同眼轴长度晶状体常数优化的效果。方法:回顾性收集2021年6月—2022年3月在上海爱尔眼科医院行白内障超声乳化手术联合植入PanOptix IOL患者的术前眼球生物学测量参数、植入IOL度数和术后1~3个月的显然验光结果。联合SRK/T、Hoffer Q、Holladay 1、Haigis公式,通过回归法计算优化的晶状体常数A、pACD、SF,通过多元线性回归计算优化的晶状体常数a0、a1和a2。观察晶状体常数优化前后平均绝对预测误差值(mean absolute error,MAE)及中位绝对预测误差值(median absolute error,MedAE),预测误差在±0.25、±0.50、±0.75、±1.00 D以内的百分比的差异,评价晶状体常数优化对IOL计算准确性的影响。随后,按照眼轴长度进行分组(非高度近视组:<26.00 mm; 高度近视组:≥26.00 mm),比较非高度近视组和高度近视组优化晶状体常数的差异。结果:共92眼(54位患者)纳入研究。优化前的晶状体常数A、pACD、SF、a0、a1和a2分别为119.1、5.63、1.83、1.39、0.40和0.10;优化后分别为119.35、6.14、2.36、?3.42,0.12和0.34。在全部眼轴组,晶状体常数优化前,SRK/T、Hoffer Q、Holladay 1、Haigis公式的MAE值分别为0.44、0.50、0.54、0.46 D;优化后,MAE值分别为0.43、0.54、0.51、0.35 D,其中Haigis公式优化前后比较差异有统计学意义(P=0.001)。在非高度近视组,晶状体常数优化前,4条公式的MAE值分别为0.46、0.40、0.40、0.42 D;优化后,MAE值分别为0.46 D、0.38 D、0.39 D、0.38 D,比较差异均无统计学意义(均P>0.05)。在高度近视组,晶状体常数优化前,4条公式的MAE值分别为0.42、0.59、0.66、0.50 D;优化后,MAE值分别为0.36、0.48、0.47、0.31 D,其中Holladay 1和Haigis公式优化前后比较差异有统计学意义(P 分别为 0.020、0.002)。结论:PanOptix IOL的晶状体常数优化可以提高IOL度数计算的准确性,在高度近视组中比非高度近视组中优化意义更大。
Objective: To assess the benefits of intraocular lens (IOL) constant optimization of Alcon Acrysof IQ PanOptix TFNT00 (PanOptix) on the accuracy of IOL power calculation, and the effects of constant optimization between different axial length (AL) groups were further compared. Methods: Patients who underwent phacoemulsification and implantation with PanOptix IOL between June, 2021 and March, 2022 were included in this retrospective study. The preoperative biological ocular parameters, implanted IOL power, and subjective 1-3 months postoperative refraction were collected. Combined with SRK/T, Hoffer Q, Holladay 1 and Haigis formulas, the optimized IOL constant A, surgeon factor (SF), post-surgery anterior chamber depth (pACD), and a0, a1, a2 were back-calculated. Refractive outcomes using optimized IOL constants were re-calculated combined with the corresponding formulas. Compare the mean absolute error (MAE), medium absolute error (MedAE) and percentage of eyes with IOL prediction errors (PE) within ±0.25, ±0.50, ±0.75 and ±1.00 (diopter)D when using the optimized constants and the manufacture constants. Patients were divided into two groups according to AL (non-high myopia: <26.0 mm; high myopia: ≥26 mm), compare the difference of IOL constant optimization between AL subgroups. Results: A total of 92 eyes of 54 patients were enrolled. The manufacture lens constant of A, pACD, SF, a0, a1 and a2 are respectively 119.1, 5.63, 1.83, 1.39, 0.4 and 0.1; and the optimized values are respectively 119.35, 6.14, 2.36, ?3.42, 0.12 and 0.34. In all patients group, with manufacture lens constant, the MAE values of SRKT, Hoffer Q, Holladay 1 and Haigis formula are 0.44, 0.50, 0.54, 0.46 D; with optimized lens constants, the MAE values are 0.43, 0.54, 0.51, 0.35 D, and there is a statistical difference of Haigis formula after optimization (P=0.001). In non-high myopia group, with manufacture lens constant, the MAE values are 0.46, 0.40, 0.40, 0.42 D; with optimized lens constants, the MAE values are0.46, 0.38, 0.39, 0.38 D, and no statistical difference has been found(P>0.05). In high myopia group, with manufacture lens constant, the MAE values are 0.42, 0.59, 0.66, 0.50 D; with optimized lens constants, the MAE values are 0.36, 0.48, 0.47, 0.31 D, and there are statistical differences of Holladay 1 and Haigis formula after optimization (P = 0.020, 0.002). Conclusion: IOL constant optimization of PanOptix IOL can improve the accuracy of IOL calculation, which is more significant in the high myopia group.
随着人工智能(artificial intelligence,AI)技术的快速发展,其在医疗领域的应用正带来革命性的变化。白内障作为全球范围内最常见的可逆性视力障碍之一,在管理和治疗方面依然存在着医疗资源不足、诊断精度低、转诊效率低等诸多实际问题。因此,利用AI技术强大的计算分析和智能决策能力,优化传统医疗实践方式,对于保障人们的视觉健康至关重要。该文探讨AI技术在推动白内障分级诊疗新模式方面的应用,包括白内障图像自动分析与识别、远程医疗和转诊支持等,这些应用能够为白内障患者、社会以及政府带来多方面的显著益处和重要影响,有助于提高白内障诊断和治疗效率,缓解医疗资源不均衡问题,优化医疗资源的配置和管理,推动社会健康进步。然而,AI技术的实际应用也面临风险和挑战,应当充分重视和保护患者数据隐私和安全,建立严格的监管和监督机制,并持续加强技术创新,全面评估AI算法的鲁棒性、公平性和可解释性,以进一步提高AI系统的准确度和可信度。
With the rapid development of artificial intelligence (AI) technology, its application in the field of healthcare is bringing revolutionary changes. Cataracts, as one of the most common reversible visual impairments worldwide, still face many practical issues in terms of limited medical resources, low diagnostic accuracy, and low referral efficiency. Therefore, it is crucial to utilize AI technology's powerful computational analysis and intelligent decision-making capabilities to optimize traditional medical practices and safeguard people's visual health.This article investigates the applications of AI technology on a new model of hierarchic diagnosis and treatment for cataracts, including automatic analysis and recognition of cataract images, remote healthcare, and referral support. These applications can bring significant benefits and important impacts to cataract patients, society, and governments. They can help improve the efficiency of cataract diagnosis and treatment, alleviate the imbalance of medical resources, optimize the allocation and management of healthcare resources, and promote societal health progress.However, the practical application of AI technology also faces risks and challenges. It is important to fully prioritize and protect patients' data privacy and security by establishing strict regulatory and oversight mechanisms. Additionally, continuous efforts should be made to enhance technological innovation and comprehensively evaluate the robustness, fairness, and interpretability of AI algorithms to further improve the accuracy and trustworthiness of AI systems.
据统计,目前全球有近14亿近视人口,近视已成为全球主要的健康问题。近视不仅影响个人的视力健康,还可能引发多种严重的并发症,如高度近视相关的黄斑变性和视网膜脱离等,严重时可导致失明。除了对个人健康的影响,近视还带来了巨大的经济负担,包括直接医疗成本(如眼镜、隐形眼镜、矫正手术等费用)和间接成本(如生产力下降、学习能力降低和生活质量的下降)。在中国,近视的问题尤其显著,近视患病率居高不下,这不仅对个人健康构成威胁,也对社会和经济造成重大影响。国际上,近视的经济负担研究涵盖了医疗直接成本、患者时间成本及生产力损失等方面,可以帮助政府和卫生部门了解近视疾病的经济影响,从而制定合理的公共卫生政策和资源分配策略,优化医疗资源使用,减少社会成本。该文从近视疾病经济负担的构成及其测算方式、国内外经济负担现况等方面对近视疾病经济负担进行简要综述,旨在提供一个关于近视疾病经济负担的综合性认识,指出当前研究的方向和成果,以及预防近视和减轻其经济负担的重要性,为未来研究提供方向和基础。
It is estimated that there are nearly 1.4 billion myopic people in the world, and myopia becomes a significant global health problem. Myopia not only affects visual health, but also leads to serious complications such as macular degeneration and retinal detachment, which can cause blindness in severe cases. Apart from its impact on health, myopia also imposes a substantial economic burden. This burden includes direct medical costs (e.g., expenses for eyeglasses, contact lenses, and corrective surgeries) as well as indirect costs (e.g., reduced productivity, learning abilities, and quality of life). The prevalence of myopia is particularly high in China, posing a threat not only to individual health, but also to society and the economy. International studies on the economic burden of myopia have examined the direct medical costs, patient time costs and productivity loss. These studies help governments and health authorities understand the economic impact of myopia to develop effective public health and resource allocation strategies.. By optimizing medical resources and reducing social costs, these measures aim to alleviate the economic burden. This article provides an overview of the economic burden of myopia, including its definition, measurement, current status at home and abroad, and the importance of prevention and alleviation. It also highlights the current research directions and findings, to provide focusing fields and foundations for future research.