《眼科学报》深知数据可视化在现代科研传播中的重要性,并鼓励作者利用多种可视化工具,以增强其研究的表现力和可理解性。我们支持包括但不限于以下数据可视化格式和对象,以促进研究数据的可访问性、可发现性和利用性。
当前支持的数据可视化工具:
· 大型图像、图像堆栈、图像序列: 我们提供交互式查看器或“虚拟显微镜”功能,使读者能够在文章的HTML版本中对图像进行平移、缩放和浏览。适用于尺寸较大、细节水平高的图像,此功能特别有用,因为这些图像在传统展示方式下可能难以清晰呈现。此外,它也适用于以交互式展示的图像堆栈和序列。适合此查看器图像的设备包括幻灯片扫描仪、共聚焦显微镜或宽视场相机。对于中等大小的图像,常规图像形式的呈现可能更为理想。
正在开发的数据可视化工具:
· 3D模型: 旨在提供一个平台,使作者能够展示分子模型、晶体学数据、神经影像数据、放射学数据以及其他通用3D模型。这将为读者提供一个全新的视角,以三维形式直观地理解复杂的科学数据。
我们鼓励作者在准备手稿时考虑如何有效地利用这些工具,以便更好地展示他们的研究成果,并通过提高文章的可视化质量来吸引更广泛的读者群体。数据可视化不仅能够增加文章的吸引力,还能够帮助读者更深入地理解研究内容,从而提升研究的影响力。
所有的可视化内容都应遵循相关的技术和伦理标准,确保数据的准确性和适当的表示。我们期待作者们的积极参与,共同推进科学研究发展。
Eye Science recognizes the crucial role of data visualization in modern scientific communication and encourages authors to leverage various visualization tools to enhance the expressiveness and clarity of their research. We support a range of data visualization formats and objects to improve the accessibility, discoverability, and usability of research data.
Currently Supported Data Visualization Tools:
· Large images, image stacks, image series
We offer an interactive viewer or "virtual microscope" feature that allows readers to pan, zoom, and browse images within the HTML version of the article. This is especially useful for large, high-detail images, which may not be adequately displayed using traditional methods. The feature also supports the interactive display of image stacks and series. This tool is ideal for images captured by devices such as slide scanners, confocal microscopes, or wide-field cameras. For medium-sized images, conventional image formats may still be preferable.
Data Visualization Tools in Development:
· 3D models: A platform is being developed to allow authors to present molecular models, crystallographic data, neuroimaging data, radiological data, and other common 3D models. This tool will offer readers a novel perspective to intuitively grasp complex scientific data in three dimensions.
We encourage authors to consider how best to utilize these tools when preparing their manuscripts, as doing so will enable them to present their research more effectively and attract a broader readership by enhancing the visual quality of their articles. Data visualization not only increases the appeal of a paper but also helps readers gain a deeper understanding of the research, ultimately boosting its impact.
All visual content must adhere to relevant technical and ethical standards to ensure the accuracy and appropriate representation of the data. We look forward to authors actively engaging in the advancement of scientific research through these tools.